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I
HI STOR ICAL NOTE

The art of projecting missiles is very old, dating back at
least to the Roman ballista, but it was placed on a scientific
footing until the sixteenth century, when the Italian mathematician
Niccolo Fontana Tartaglia studied the trajectories of missiles fired
from weapons ranging from pistols to cannon. As the first mathe-
matician to optimize the aim of a weapon one might call him the
prototype of the modern missile analyst. Yet his knowledge was
purchased at a price, as revealed by the following passage toward
the end of the dedication in his Nova Scientia Inventa (1537):

"But then in reflecting one day it struck me as blame-
worthy, infamous, and cruel, and meriting no small
punishment before God, to wish to refine an art so
injurious to one's fellow men - a vile destroyer of
the human race, and especially of Christians in their
incessant warfare."

Similar misgivings about the social consequences of scientific work
devoted to war have been expressed ever since, culminating in the
angst of the atomic scientists after World War II. The authors of
this monograph are not immune: but our concern has been tempered
by the hope that a quantitative understanding of missile defense
strategies may actually reduce the probability of intcrnational con-
flict. At the very least, this monograph should discourage any
naive belief that a perfect defense is possible.
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FOREWORD

The publication of this monograph represents a new venture
in our continuing effort to broaden the services that the Military
Operations Research Society (MORS) offers to the professional
military operations research analyst. It is our hope that the re-
sponse generated by this publication will encourage a continuing
series of monographs of special interest to our society. In particu-
lar, we place lugh value on the encouragement to authors that such
a series might offer and the consequent enlargement of the litera-
ture of military operations research.

The MORS is extremely fortunate and proud to have Dfs.
Ecker and Burr's monograph as our first publication. A first pub-
lication always sets a standard for others to follow. As such, this
monograph represents the highest standards of both technical excel-
lence and relevance to military operations research.

I also vwant to recognize the MORS committee on publication
and its Chairman, Mr. Sid Moglewer, who conceived of this project -

and carried it through to the very successful conclusion. Particu-
lar recognition should go to Dr. Walter Deemer, who as a member
of that Committee identified the original manuscript and gave gener-
ously of his time to its publication.

ROBERT H. STEVENS
President 1971-72

AI

I•



PREFACE

It is commonplace for the authors of a survey monograph to
invite readers to submit additions or corrections for a possible
later edition. We are keenly aware that we are guilty of sins of
omission, for the literature on the target coverage and missile al-
location problem is widely dispersed, and much of it is virtually
inaccessible to the layman. We are interested in giving credit for
priority associated with each methodology: however, our major in-

terest is not in tracing the historical thread of a development but in
making sure that the most. important ideas have been brought to-
gether and systematically compared.

In a book with two authors, questions inevitably arise concern-
ing the nature of each one's contributions. The senior author (A. R.
Eckler) has been responsible for searching the literature for rele-
"vant material, for deciding upon the basic structure of the book, and
(for the most part) for writing up results in a form intelligible to
the non-mathematical reader. The junior author (S. A. Burr) has
been responsible for correcting, clarifying and occasionally develop- A
ing in detail the mathematics, as well as improving the organization
and exposition of the monograph in many sections. This division of
responsibility may help the reader decide to whom any criticisms,
additions or inquiries should be addressed.

Many sections of this monograph were originally developed
by Bell Telephone I,aboratories colleagues of the authors during
the years 1965 through 1970; their work has materially enhanced
the scope of this book One of the motivations for writing this book
was to bring their excellent work to the attention of a wider audience.
These contributors were:

D. J. Brown* J . A. Hooke M. J. Spahn*
J. Eilbott S. Horing C. W. Spofford
M. L. Eubanks* D. Jagerman R. E. Thomas
D. Guthrie* H. Polowy* M. S. Waterman*
H. Heffes W. L. Roach F . M. Worthington*

S. A. Smith

An asterisk after the name indicates that the author is no longer as-
sociated with Bell Telephone Laboratories. It is hoped that sufficient
details of their work have been given to satisfy the needs of most
readers interested in missile allocation strategies. However, the
occasional reader who requires more detailed information about
these models may telephone the senior author at Bell Telephone
Laboratories, Holmdel, New Jersey.

I A. Ross Eckler
May 7, 1972 Stefan A. Burr A
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CHAPTER ONE

AN OUTLINE OF CRIECTIVES AND) SOME

UNDERLYING ASSUMPTIONS

I)u rini the past twcnt. yearvs ; lar,'e numIheir of inmat hem ati-
cal investigatins huve been carried out in two broad areas: (1)
properties of attacks on point and area targets by weapons having
various aiming-errors and destruction capabilities: (2) allocation
of missiles for the defense of a group of point targets, and alloca-
tions of wcapons for attacks against a group of point targets. Un-
fortunately, these investigations are so varied aid so widely scat-
tered that it is difficult to obtain a unified view of the subject.
Some are found in the classified literature: others are reported on
in govermment and company documents: many have been published
in the Amnals of Mathematical Statistics, Journal of the American
Statistical Association, Techometrics, Biomctrika, Journal of the
Operations Research Society of America, SIAM Review, American
Mathematical Monthly, and similar journals. The object of this

lonograph is to bring to.ether these Investigations and present
them in a more or less logical pattern.

None of the references actually cited in this monograph is
classified. Perhaps surprisingly, it has not been found essential
to cite any. Mathematical models, by their nature, do not normally
require classification, and it appears that the authors of classified
studies have usually tried to publish the mathematical aspects of
such studies in the unclassified literature. It is hoped that this
mono graph may serve to encourage this practice.

Although all references are unclassified, many (particularly
government and company documents ,alluded to previously) are not
easily obtainaule. Many documents are available through the
Defense Documnentation Center (DDC', Cameron Station, Alexandria,
Va. The general difticulty of obtaining such information was one of
the motivations for writing this book.

This monograph is directed tnward two different classes of
readers. The more important reader is the engineer who is
charged with the responsibility of designing a rational missile de-
fense of a group of targets threatened by an offensive weapon force
(such as intercontinental ballistic missiles, or shorter-range
submarine-launched missiles). Generally he has neither the time
nor the inclination to wade through detailed mathematical proofs
in order to extract the essential ideas in a potentially relevant
article. Accordingly, this monograph omits most mathematical1
proofs except those of a trivial nature; the reader interested in
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profs11 must "c.neralyV examine the orihinal refereneces. The few
exceptions to this policy generalfly represent cases w\here no UdC-
quate proor exists in the literature, and even then proofs are olten
only sketched. Instead, great emphasis has been placed on dis-
playing the underlying assumptions of each model, comparing or

contrasting it with other models.
'nhis monograph is also directed toward mathematical ana-

Nlysts, patiicularly aiame thourist.s and l)rOb)ability theorists. It is
clear that there ate nIanv c hallcnging- unsolve'd problems in inissile
offense and defense. In various places il the text, conjectures are -(
stated: sometimes, these are supported by numerical examples or
by Monte Carlo simulation. In other places, the omission of cor-
tatintopics stw-gcsts areas of further research. For example,
danmagc assessment strateg-is are discusý.od when the targets heinm
defended have the same value, but no mention of this topic is made
when) considerin, targets of unequal value.

This nliollO,,raph may interest those concerened with opera-
tions research in g<ener'al. Even thougIh the models in this mono-
graph are idcalti/ed, tor tl e most part they have arisen from at-
tempts to apply mathelnatics to real probhunis. There is something,
to be learned from examining the compromises between re-aismin
and mathematical tractabilit; that have heen made.

Finally, some of the models considered may be applicable to
topics other than missile allocation. In fact, a number of the ref-
erences in this nionograph use either non-military examples, or
are formulated abstractly. For the sake of exposition, such ref-
erences are often presented here ;n a manner that may suggest I
the author had missile allocation in mind when in fact such was not
the case. Perhaps the most striking example of this is Kabak's
paper at the end of Section 3.6: hc applied the mathematical model
to the scheduling of the deliveryN of babies. Further, the reader is
forewarned that minor changes and corrections have been made
(usually without comment) in the formulations and solutions of the
models of the references. However, these changes do not afect
the basic results of the original work.

In many missile offense and defense studies (particularly
those which appear in the classified litetrature), a large number of
detailed assumptions are made in order to mirror reality as close-
ly as possible. The resultant mathematical model is usually so
complicated that analytic solutions are impossible. Typically, it
then becomn~s necessary to resort to 'Monte Carlo simulation on a a
diigital computer in order to evaluate the results of strategies ar-
rived at externally to the model. Simulation can rarely generate
enough different restlts to find an approximat- optimum with hig,,h
confi-dence. This monograph, in contrast, attempts to dissect these
complex models into their component parts, examining the effects
of assumptions taken a few at a time. By doing this, an analytic
formulation is often possible, and one can better understand the
effects of each assumption upon tile final answer. In short, it is
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unlikely that the modeis presented in this monograph can be used
directly to solve realistic missile offense and defense problems,
but it is hoped that they may provide insight into such problems I
and may be used as part of a practical solution. At the very least,
the missile analyst should gain some idea of the likelihood that an
analytic approach to this problem would be fruitful.

1.1 THE CHOICE OF A CRITERION OF EFFECTIVENESS

If the defense knows the size of the offensive stockpile to be
used against a set of targets, and the offense knows the size of the
defensive stockpile, the criterion of effectiveness generally used
is that of expected target value destroyed (or saved). The defense
wishes to select strategies which minimize this quantity, whereas
the offense wishes to select strategies which maximiLze this quan-
tity. One speaks of expected target value destroyed, rather than
actual target value destroyed, because of the typical uncertainties
of the outcome of the engagement; for example, it is usually as-
sumed that an unintercepted offensive weapon has a probability p
of destroying the target against which it is directed, and a defens-
ive missile has a prubability d of destroying the offensive weapon
it is directed at. Furthermore, in multiple target situations, the
actual number of defensive missiles and offensive weapons asso-
ciated with each target is likely 'o he unknown to the defense.

Although the criterion of expected target value destroyed has
the great virtue of mathematical tractability, it may not be the
most suitable criterion in a specific missile offense or defense
problem. For example, the defense may be much more anxious to
know how much target value will survive (say) 90 per cent of all
attacks of a given size. Ordinarily, criteria such as these are
much more difficult to deal with analytically: however, they can
easily be used in Monte Carlo simulations. Instead of determin-
ing the probability density function of surviving target value, one
might perhaps seek to calculate the mean and variance of this
density.

Instead of minimizing the expected target value destroyed,
the defense can elect to maximize the probability that no targct
value is destroyed. This alternative criterion is particularly
appealing when the number of defensive missiles available at a
target (or group of targets) equals or exceeds the number of of-
fensive weapons directed at that target (or group of targets). This
might bc the situation in an accidental attack: however, it seems
plausible that a determined and rational offense will not normally
attack a target unless he can count on fairly heavy damage. Anal-
ogously, the offense can elect to maximize the probability that all
target value (or a predetermined function of target value) is de-
stroyed, if surviving targets are intolerable from his standpoint.

It is likely that the choice of a criterion will depend more
strongly upon the nature of the target than on the relative numbers
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of defensive missiles and offensive weapons. It seems reasonable
to use the expected target value destroyed criterion for targets
such as buried silos containing ICBMs; thf usefulness of undamaged
targets does not depend upon the fraction of targets destroyed.
However, if one considers targets such as cities, it may happen
that even a relatively small amount of damage will have almost as
catastrophic effects as a large amount of damage. (Penetrators
after the first contribute very little more to the general catastro-
phe.) If this is so, a defense strategy which maximizes the proba-
bility of no damage (even though the probability of no damage is
rather low) may be the rational one to choose. These are difficult
and controversial choices, and the reader will not find the answers
to them in this monograph.

A third criterion of effectiveness is defined if one minimizes

the expected number of weapons not intercepted by the defense.
This asymptotically approaches the first criterion when the proba-
bility of target destruction (or the expected fraction of the target
destroyed) by an unintercepted weapon approaches zero. There
exist at least three significant cases in which the second and third
criteria lead to identical defense strategies, and many in which they
differ. It would be of considerable interest to specify the precise
range of conditions under which different criteria lead to the same
strategy. Three cases where they do lead to the same strategy are:

1. A single target is attacked by A weapons and defended by
D missiles. Each missile destroys the weapon at which
it is aimed with probability p; missile engagement out-
comes are independent of each other. Target damage is
proportional to the number of weapons which are not de-
stroyed (in other words, the expected target value de-
stroyed is proportional to the expected number of
weapons which are not destroyed).

2. A set of T equal-valued targets is attacked by one offens-
ive weapon apiece, and defended by D missiles. Each
missile destroys the weapon at which it is aimed with
probability j,; missile engagement outcomes are inde-
pendent of each other. The probability that the ith target
is destroyed if the weapon directed at it is not inter-
cepted is permitted to depend on i.

3. A single target is attacked by A weapons and defended by
D missiles. Each missile destroys the weapon at which
it is aimed with probabilit; d; missile engagement out-
comes are independent of each other. The defense uses
a two-stage shoot-look-shoot strategy; that is, it allo-
cates D-m missiles to the attackers, observes which
attackers survive this defense, and then allocates m mis-
siles to the survivors. Target damage is proportional
to the number of weapons which are not destroyed at
Aither stage (in other words, the expected target value
destroyed is proportional to the expected number of
weapons which are not destroyed).



However the two criteria lead to different defensive alloca-
tions in the folfowing single-target situation. Assume that the de-
fense has D missiles and the offense has A weapons, but that the
actual attack size is given by the probability density function
Pr (i attackers) = pi, i = 1,..., A, :''pi = 1. The probabilities pi
are assumed to be known by the defense. A simple numerical ex-
ample will illustrate that different defense strategies are required.
Assume that A = D = 3, and that p1 = 0.3, P2 = 0.1 and p3 = 0.6.

Assume also that the defensive missile reliability p is equal to 0.5.
The defensive strategy minimizing the expected number of pene-
trators consists of allocating one defensive missile to each offen-
sive weapon that arrives; the expected number of penetrators is
equal to 1.15, and the probability of no penetrators is 0.250. The
defensive strategy maximizing the probability of no penetrators
consists of allocating two missiles to the first arriving weapon and
one missile to the second arriving weapon; the expected number of
penetrators is 1.30 and the probability of no penetrators is 0.265.
As in the above example, however, the two criteria lead to fairly
similar results.

If the defense has no information about the size of the offen-
sive stockpile, it is not possible to design a strategy which mini-
mizes the expected fraction of targets destroyed (or maximizes the
probability that no targets are destroyed). However, other criteria
can be formulated. If the offense fires weapons one at a time against
a single target, one natural objective for the defense is to maximize
the expected number of weapons until the first penetrator (that
weapon which destroys the target).

Alternatively, the defense can design its strategy so that the
expected payoff per offensive weapon is as small as possible. To
do this, the defense selects a strategy so that the expected fraction
of targets destroyed (or, for a single target, the probability of tar-
get destruction) is essentially proportional to the attack size. Ob-
viously, it is not possible to maintain proportionality beyond that
attack size which exhausts the defensive stockpile.

Let A denote the attack size which exhausts the defense, and
let F denote the expected fraction of targets destroyed at that time.
For attacks of size a 2- A, and under appropriate assumptions, the
expected fraction of targets destroyed will follow an exponential
law:

E =F I~ ( - F) (i1 - exp (-a (a-A))),

where a is a measure of target hardness and offensive weapon yield
and accuracy. The object of the defense is to select the pair (F,A)
so that

F/A max E/a.
a7: A
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It is not hard to show that if the pair (F,A) is selected so that
F >- o A,(1 , A), then for all a '> A, dE/da < F/A, and the de-
fense objective is assured.

Other criteria of optimality can be proposed. What seems to
be needed is an underlying logical framework within which these
and other criteria might be placed and compared. What is a natural
criterion to choose in a given defense situation? If (as appears to
be the situation) the criterion is related to the degree of knowledge
each side has about the other, such a choice may have to depend
heavily on intuition.

As a final c')mment, it should be emphasized that the choice
of a criterion is usually s(,inewhat arbitrary and its definition is
usually based on imprecise data. For this reason, it may often be
appropriate to choose a criterion for its mathematical tractability,
rather than for its closeness to some possibly arbitrary objective.

1.2 SOME COMMENTS ON THE SCOPE OF THE MONOGRAPH

No attempt has been made to formulate and compare mathe-
matical models for all aspects of missile offense and defense; this
section briefly describes tne scope and limitations of this work.

To begin with, questions involving costs or economic use of
limited resources have been ignored (with the sole exception of
Sections 6.3 - 6.3.5). The mathematical models in Chapters 4 and
5 usually begin with assumptions about offensive weapon and defen-
sive missile stockpile sizes, and the probabilities that a target
survives an attack by either an intercepted or unintercepted weapon.
To calculate such probabilities, it is necessary to know such pararn-
eters as the reliability of the defensive missile the yield of the
offensive weapon, the aiming-accuracy of the offensive weapon, and
the hardness of the target. In Chapter 2 the aiming-accuracy is
included in the mathematical model, but the yield of the weaplon and
hardness of the target are lumped tog ether in a single quantity (the
radius of effectiveness of the weapon). However, parameters such
as these are not fixed quantities given to the missile defense engi-
neer; many different possibilities can be considered. For example,
a budget-constrained offense can manipulate weapon yield. stockpile
size and atming-accuracy; similarly, a budget-constrained defense
can spend money either on hardening targets or procuring more
(or more reliable) defensive missiles. Economic choices are usu-
ally difficult to formulate in realistic mathematical models; often,
the missile defense engineer is reduced to proposing various equal-
cost systems and evaluating the performance of each one. The
missile allocation models of this monograph may be helpful in de-
signing a system, but they can do only part of the job.

In Sections 6.1.1 - 6.1.6 models are considered in which it is
assumed that the offense overwhelms the defense by means of radar
destruction, defensive stockpile exhaustion, or offensixe leak.age
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(offensive weapons penetrating when defensive missiles assigned d
to them fail to destroy them). However, the offense has other op-
tions, such as the use of concealment (blackout of radars by means 4
of chaff or atmospheric ionization) or active jammers. The mathe-
matical models in this monograph do not take tactics such as this
into account; in effect, perfect radars and adequate data-processing
facilities are assumed. (The only exception is in Section 3.5.2,
where it is assumed that the radar requires T seconds to process
each intercept.)

The only decoy model discussed in the monograph can be
found in Section 3.4.0. It is quite difficult to specify in a mathe-
matical model the changing visibility of a decoy as it approaches
the target. Also, it is not certain that the offense will want to use
decoys at all: he may prefer to use many weapons of relatively low
yield, counting on leakage or defensive stockpile exhaustion to de-
stroy the target.

With so many topics excluded, one might plausibly conclude
th!at there remains little for this monograph to discuss. Yot this
is far from the case; coverage and allocation problems reveal an
unsuspected wealth of possibilities. Ih does not seem to be gener-
ally realized that offensive and defensive strategies depend strong-
ly upon what each side knows about the other's plans, capabilities
and resources. For example, can the offense see the defensive
allocation of missiles to targets before allocating weapons to tar-
gets? Or must each side allocate in ignorance of the other? Does
the offense know that the defense is allocating missiles to individual
targets or defending any of a group of targets with its missile
stockpile? Does the defense know which targets have been de-
stroyed, and cease allocating defensive missiles to them? Can the
defense predict at which target an offensive weapon is directed, at
the time a defensive missile is assigned to that weapon? What does
the defens, do if he does not know the offensive stockpile size?
Questions such as these hint at the almost endless variety of pos-
sible models based on different states of knowledge.

It may be prudent for the defense to select an allocation
strategy which makes as few assumptions as possible about the
offensive stockpile and strategy. Although such a defensive strateg!y
will perform less well than one using more assumptions, when
these additional assumptions are true, it may perform much better
than one using more assumptions, when these additional assump-
tions are false. The above is one way of attempting to produce a
strategy which performs reasonably well under a variety of condi-
tions. Such strategies are often called robust strategies; for ex-
ample, attempts to make damage proportional to attack size tend to
lead to robust strategies. Robustness is clearly a desirable prop-
erty of a strategy. Unfortunately, very little investigation has been
made of the robustness of the strategies in this monograph. One
can only reason from analogy in the field of mathematical statistics,
where for many years statisticians have investigated the properties
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of various estimators of population parameters when assumptions
about the nature ot the population are incorrect.

Mathematical analysis is frequently easier to carry out if
idealized models are postulated. For example, if the area of a tar-
get is !mall with respect to the destructive area of a weapon, it is
convenient to treat it as a point target. On the other hand, if the
area is large, the target may be approximated by a uniform or a
(aussian distribution of value, instead of an irregular two-
dimensional figure. Similarly, in order to avoid integer constraints
on missiles or targets, it may be convenient to assume that large =

numbers of missiles or targets a,-e present and use real numbers
instead. Two limiting models of defensive missile performance
arc especially useful. In one, missiles are assumed to have perfect
(or near-perfectO reliability, so that one-on-one engagements are
the only ones that occur. In the other, a very large nmnber of indi-
vidually unreliable missiles are postdilated, so that any probability
of successful interception can be achieved by a suitable allocation.
As another example of useful limiting cases, offensive weapons
may be assumed to arrive and be dealt with either one at a time,
or all at once: intermediate cases are generally not considered.
In general, partially overlapping defensive missile coverage is not
considered; instead, one assumes that all defensive missiles can
defend all targets in a group, and different groups are defended by
independent sets of missiles. It is usually possible to bracket the
real situation by one or more of the idealized ones, and from the
idealized ones obtain some notion of reasonable defense strategies
to use.

1.3 ANOTHER SURVEY OF THE MISSILE ALLOCATION
PROBLEM

Matlin (1970) is '. only author prior to this monograph to
attempt a general survey of the missile allocation problem. He
briefly analyzes a total of 40 unclassified articles: ten papers
published in the Journal of the Operations Research Society of
America, one talk given at an OSA meeting, and twenty-nine
government and company reports (Rand Corporation, Lambda Cor-
poration, Analytic Services Operation, Stanford Research Institute,
Boeing, General Electric, etc.). Each article is represented by a
brief abstract: it is necessary to go back to the original referencesfor the analytic formulas or computing algorithms.

Matlin proposes that all articles relating to the missile allo-
cation problem be fitted into a nine-part classification system:

1. weapon scope (one or more weapon types? decoys ?)
2. weapon reach (what payloads can reach which targets?)
3. weapon commitment (one or more waves? launch reli-

ability? offensive damage assessment?)
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4. target types (point targets? area targets? collateral
damage ?'.

5. target value (equal values? ranked in value? different
values? value of defensive system?)

6. defense level (undefended? terminal defense? area
defense also? defense allocation unknown to
offense ?)

7. engagement model (ha-d or soft targets? reliable or

unreliable defensive missiles?)

8. damage model (zero-one or probabilistic? total or
partial damage from a single weapon?)

9. algorithm used to calculate optimum allocation.

Unfortunately, not all missile allocation models fit conveniently in-
to this somewhat Procrustean bed; Matlin creates a special cate-
gory for models in which a probability pij is given '-hat the ith

weapon penetrates the defense and destroys targetj.

Many of the above concepts are treated in this monograph.
However, there is a subtle difference between Matlin's work and
this monograph - his article is org,anized around the concept of
optimizing offensive weapon allocations, whereas this work is
organized around the concept of optimizing defensive missile al-
locations. (Of course, there is considerable overlap between the
two topics, especially when two-sided optimizations must be con-
sidered.) Reflecting the latter philosophy, the basic chapter organ-
ization of this monograph proceeds from the no-defense case to
isolated targets, groups of equal-valued targets, groups of targets
with different values, and finally interactions between the targets
and their defense system. Chapter 4, the core of the book, con- U
siders a large number of defense models principally distinguish-
able by the degree of knowledge the offense and defense have about
each otler and about the nature of the engagement: such knowledge
is less emphasized by Matiin. On the other hand, Matlin places far
more stress on such topics as decoys, multiple weapon types, and
weapons reach than this monograph does. Hence, the two surveys
should be regarded as complementary rather than competitive.

A second difference between Matlin's work and this mono-
graph is the degree of organization of the material. As noted
above, Mztlin classifies all papers in a fairly rigid system, but this
monograph has adopted the contrasting philosophy of letting the
existing papers suggest the overall organization. Because the sub-ject of miiss~il allocation has developed in an uneven fashion, this

sometim'•s lea.ds to unexpected changes in the narrative. To amel-
iorate this co'ffusion, detailed chapter headings and summaries at j
the end of each chapter have been introduced.

A

A

a i I I I I I
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1.4 A SURVEY OF MATHEMATICAL TECHNIQUES

Even a casual reader will observe that a great variety of
mathematical models are to be found in this monograph. It is,
therefore, somewhat surprising that most methods of analysis can
in fact be loosely assigned to a small number of general classes.
Although there is enormous variety within each class, such a clas-
sification is useful in studying the relationships between various
models and solutions.

The remarks to follow apply primarily to Chapters 3 through
6, and to a much smaller extent to Chapter 2. In fact, the content
of Chapter 2 is somewhat anomalous, the characteristic techniques
are evaluations of (or approximations to) multiple integrals, and
estimation of ulknown parameters from data.

Undoubtedly the most prevalent technique to be found is that
of permitting the continuous variation of parameters which inl
reality can take on only integral values. A typical example of this
approach can be found in Section 3.1. This technique creates
round-off L)roblems which can sometimes make the results useless.
However, the round-off problem can often be controlled as demon-
strated in Section 4.3.3. The continuous approach may well be
selected more often than necessary, because fewer people are
trained in the use of discrete mcthods than continuous ones. Al-
though discrete methods are not as difficult to use as commonly
supposed, frequently there is considerable insight to be gained by
the continuous approach.

Standard elementary optimization is a technique which oft :n
goes hand-in-hand with the above. Although it is based on strai 'hi-
forward calculus and algebra, the analysis can sometimes become
rather involved, as demonstrated in Section 3.1. In addition, cor-siderable care must be exercised to include all endpoint optima

and multiple stationary points that occur when an objective func-
tion assumes different forms in different regions; for example,
see Section 5.5.1. Tim references in this monograph contain many
examnples of failure t,. exercise such care; often such errors havebeen corrected without comment.

The technique of Lagrange multipliers is widely used for
finding constrained optima. Often this is just a simple extension of
standard elementary optimization, but it can also be applied to
problems well outside the context discussed in textbooks. For in-
stance, it can be applied to problems in which the variables are
integers: see Section 5.2.2 for a fairly general discussion of the
principles involved. The Lagrangian approach can even be applied
to max-min problems, as in Section 5.3.1; however, in this case
the procedure generally leads to only an approximate solution.

Two very important techniques, sometimes used together,
are those of game theory and linear programming. For example,
these occur in an indirect form in Sections 4.3.1 - 4.3.6. It is
somewhat surprising that game theory has not been explicitly used
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more often in missile allocation problems, since game theory can
be defined as the mathematical theory of conflict. This seems to
be in part due to the fact that most such problems are too hard for
game theory to be applied directly. It can be argued, however, that
the basic concepts of game theory underlie most of the field of
missile allocation.

Another frequently-used technique is that of dynamic pro-
gramming. Where it can be used at all, it tends to be very effect-
ive. It can take many forms; a simple introduction to the concept
is to be found in Section 5.2.1. It is best applied with the aid of a
digital computer.

Another technique sometimes used has no convenient name,
although it might be called direct optimization. To apply this tech-
nique, one determines a condition that the optimum must satisfy,
finds a point that satisfies it, and shows that the point is unique.
Although this idea is often involved in other optimization techniques,
it can often have the status of an independent technique; Danskin's
application of Gibbs' lemma in Section 5.1 is an example. The
technique can also be applied to discrete problems, as in Section
4.6.1.

Yet another technique is the Monte Carlo method. Here the
problem is simulated probabilistically a large number of times
and the results averaged to give an approximation Lu the expected
outcome. An example of its application is to be found at the end of
Section 3.6. The method is widely applicable, but it is generally
slow and expensive, and its accuracy is often too low for satis-
factory sensitivity studies. However, it can be of great value when
other approaches fail.

A final technique is the prosaic one of searching among a set
of possibilities, as in Section 4.2. It usually appears as a step in
the application of other methods, as in Section 5.2.2. When two or
more dimensions are involved, the search can become expensive,
and rather sophisticated analysis may be needed to make the prob-
lem tractable.

The techniques emphasized in this monograph tend to be those
that do not require a digital computer to implement. This may
seem to be an unnecessary restriction, since almost all users of
this monograph are likely to have access to a computer. The two
primary reasons for this preference are that computer-oriented
solutions are often ad hoc and difficult to describe concisely, and
often fall outside th"noTion of a mathematical model. Because of
this, they frequently confer less insight than a more analytical ap-
proach. The authors of this munograph are not opposed to
computer-oriented techniques. Indeed, the construction of effect-
ive, practical algorithms for a computer often is a very challeng-
ing problem worthy of serious study. This field is often ignored by
both mathematicians and engineers, which is unfortunate since an
efficient algorithm can make the difference between the feasibility
or the infeasibility of a method.
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1.5 SOME COMMENTS ON TERMINOLOGY AND NOTATION

Each chapter of this monograph is essentially self-contained,
and the necessary terminolo"gy and notation is either defined as
needed or used in a self-explanatory way. Nevertheless, some
terminolog.y and notation is widely used with rather consistent
meaning in this monograph, and it seems worthwhile to summarize
it here.

In the typical conflict situation, one side, called the offenr
has a stockpile of A devices, called weapons, with \which to attack
a targzet or targets of value to the other side, called the defense.
If the targets consist of isolated points, the number of such tar-
gets is denoted by T. The defense has a stockpile of D interceptors,
called missiles, with which to defend the targets. (However, in
Chapter 3, A and D are denoted by n and m, respectively.) On a
few occasions, tile word weapon is used to mean both offensive
weapons and defensive missiles; these occasions will be clear from
context. Frequently, it is desirable to consider the stockpiles on a
per-target basis, in which case normalized stockpiles a = AiT and
d Di'T will 1,e used.

The probability that a missile will destroy the weal)on it is
assigned to is called its reliability, and is designated by /,. Tile
probability that an unintercepted weapon will destroy its target is
designated by p. The probability that an wlintercepted weapon fails
to destroy its target is designated by q0 = 1 - p. The probability

that a weapon to which a missile has been assigned fails to destroy
its target is designated by ql = I - p(l-p). If targets have different

values, the various values are designated by vlV2 , ... , vT. The

expected value surviving an engagement is designated E(V); if one
is interested in the expected fraction of value surviving, this is
designated E(f).

Certain mathematical notation is used throughout this mono-
graph. [xl denotes the greatest integer-! x; brackets are used only

for this purpose, never for grouping. The symbol (k) denotes the

binomial coefficient n! ik! (n-k) !; F(x) denotes the gamnla function.
Almost all logarithms are natural; to avoid confusion, they will
nevertheless be written log e. In a few places tile base of the

logarithm makes no difference, and is omitted. The expression
Pr( ) means the probability of the event described within the paren-
theses. The usual convention that various sums and products equal
zero and one, respectively, are used. Also, the convention 00 1
will be adopted when the expression represents a probability.

1.6 SUMMARY

This chapter sets the stage for the rest of the monograph
with a discussion of the various criteria by which different
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offense-defense strategies are to be judged, sonic comments on
mathematical models, and a list of topics that are (and are not)
emphasized. Specifically, this monograph is contrasted with a
survey article by S. Matlin in the 1970 Journal of the Operations
Research Society of America: the two should be regarded as com-
plementary in that Matlin orients his survey around the offense
whereas this survey is oriented toward the defense. The chapter
concludes with a suimmary of mathematical techniques commonly
required, as well as terminological and mathematical conventions
to be followed.

A

I

,1

Ii



CHAPTER TWO

POINT AND AREA TARGETS IN THE NO-DEFENSE CASE

At first glance the subject-matter of this chapter may ap-
pear to be rather elementary. No questions of offense or defense
strategies are involved; one is interested solely in calculating the
probability that a point target survives a salvo of one or more
weapons. If the target has an extended area, the probability of sur-
vival is replaced by the expected fraction of the target surviving.
One might reasonably conclude that a few simple mathematical
ar-g-uments involving independent random events are all that is
required.

However, appearances are deceptive. Since World War II a
large numbe.- of authors have dealt with problems of this type and
the results of their researches are widely scattered through the
mathematical literature under the general name of coverage prob-
lems. A few answers can be obtained in closed form, but the
majority run into difficulties which can be overcome only by nu-
inerical integration or simulation. This chapter attempts to clas-
sify these researches into a more or less logical pattern, empha-
sizing ideas and results rather than derivations.

This chapter is written for the engineer rather than the
mathematician. Specifically, it is restricted to two-dimensional
coverage problems rather than n-dimensional ones. Furthermore,
little if any attention is given to that part of the literature which
deals with the mathematical properties of variou6 probability
density functions useful in coverage problems. The reader inter-
ested in these details is referred to Ruben (1960). Part of the
material in this chapter is discussed in two excellent review arti-
cles on coverage problems by Guenther and Terrag-no (1964) and
Guenther (1966).

The results of this chapter may be useful for calculating de-
fensive intercept probabilities as well as offensive success proba-
bilities. Specifically, a point "target" can be identified as an in-
coming attack weapon, and the "weapun" can be identified as a
defensive missile. Of course, this transformed problem is three-
dimensional; however, it may sometimes be p:ossible to use a two-
dimensional approximation ii the defensive missile aiming error is
small in one dimension.

Much of the material in Sections 2.1 through 2.6 iii this chap-
ter was earlier published as a survey article on coverage problems
in Eckler (1969). However, the reader should be warned that in
cercain sections substantial revisions have been made. A very

1PREVZOUS PAGE
IS 6 LA,.N K
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useful general "eference, containing properties, tables, etc., of
many of the special functions appearing in tlis chapter is
Abramowitz aml Stegun (1964).

2.1 SURVI AL/DESTRUCTION PROBABILITIES FOR ONE OR

MORE POINT TARGETS
When the size of the target is small compared with the effect-

ive radius cC action of the weapon, it is represented by a point in
the mathematical model of the attack. As will be shown below,
point targets in g,,eneral are relatively simple to deal with. In par-
ticular, salvos of weapons can be handled with ease: if P denotes
the probability that a single weapon destroys the target, then the
probability that it is destioyed by at least one out of n independently

aimed identical weapons is given by 1 - (l-P) n. This assumes, of
course, that damrage is not cumulative; that is, if one weapon fails
to destroy the target, the probability that another one does is un-
changed. in particular, area targets do not have this simple prop-
erty except in certain trivial situations.

Assumue that a point target is located at the origin of coordi-
nates (0,0) in the xy-plane. Denote the probability density function
of the impact-point of the weapon by p(x,yj, and let the probability
of target destruction be given by the damage function d(x,y) if the
weapon impacts at (x,yj. Then the unconditional probability of tar-
get destruction by a single weapon is given by

P= f f d(x,y) p(x,y) dx dy

One can note in passing that this formula is also useful if the
target can incur partial damage; in this case, d(x,y) may be taken
to reepresent the expected fraction of the target destroyed if a
weapon impacts at (x , y), and P becomes the unconditional expected
fr,-ction destroyed.

In general, the damage function is circularly symmetric -
thJt is, the probability of destruction is a function of the single

variable r = (x 2  ) 1 .12 Furthermore it is a nonincreasint,
function of r. In this section, a damage ?unctio is assumed in
which d(x,y) equals unity when r -c R and zero elsewhere. Here-
after, this will be called a cookie-cutter damage function. One
then has

P = ff p(x,y) dx dy

(x 2y 2)11/2cR
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The remainder of this section is concerned with the problem of
evaluating P for various choices of the impact-point probability
density function l)(x,y). In general, p(x,y) is assumed to have. a bi-
variate Gaussian probability density function:

1 _ (xO)2  (v...)2)
- 2 2

where XoY0 is the mean of the imlpact-point distribution, cT is

the variance in the x-coordinate, and (i the variance in the y-

coordinate. Note that the covariancc t;Xy is assunmecd to be zero:,

this can always be achieved by proper choice of the x- and y-axes.
Four cases are considered:

(aý x 0 ~Y0 = 0: 2 7 22 2 (Y2
(h) x0  0, y0  0; , = x (= Y )

(c) yo = 0; (3 2 oL2 2

(di) x0  0, y 0  ', 0; x J

2.1.1 Equal Variances, Distribution Centered at Origin

If 2x = C and x0 = Y0 = 0, then p(x,y) is a function of r

alone and can be rewritten

p(rý r 2 exp (r. ,2~T

This is known as a Rayleigh distribution, and is frequently used in J
problems of noise theory. It is closely related to the exponential
distribution (the chi-squared distribution with two degrees of free-
dnom), which is the probability density function of x2  y2 = r2:

f2) 1`2a2) exp(r 2 2u2 )

It is easy to write down the pirolvbility ef target destruction
in closed form:A

PR/••) - (1" 2 ) exp(_,./2a2 ) r di, 1 - c.p(-./2u2j
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2.1.2 Equal Variances, Offset Distribution
If 2 = 2 = CT but x0 € 0, y0 ý 0, the destruction probability

2' 2 v* 1/2

P is a function of the offset aiming-point distance r0 = ix0 . 021"

Rotating the coordinates axes so that r 0 lies along the positive x-
axis,

PJ (R/y /u Iexp ((r 0), 2y2 dx dy

(X2 +Y2)1/2, R 2-/i2c

Transforming to polar coordinates by setting x r cos •,
y = r sin 0, this becomes

P(R/u',ro/c) 2= -iexp 2-" ( ) a!

R 2 rrcos 0

r exp 2-2 d dr

Integrating out the variable 0,

P(R./u, ro "a) = (1/, 2 ) exp (r 0/2 c)

O r exp (-r 2 /2a 2 ) 10 (rro/u
2 )dr

where In(z) = Jn (iz) exp(-, ni./2) is a modified Bessel function of the

first kind of order n.

This function cannot be irItegrated in closed form, but several
tables or graphs of P IR, /7, roI/) are available:

Bell Aircraft Corporation (1956): P(R/"'j,r0 ./U) to
5 decimals for r0 ./o r 0(0.01)3,

R.!o = 0.01(0.01)4.59

Marcum (1950). 1 - P(R/u,r 0 /'o) to 6 decimals for

R/u = 0.1(0.1)20, r 0 /o = by intervals cf 0.05

to cover a range of P from 0 to 1
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Rand Corporation (1952); also Owen (1962):

1- P(R/c,r 0 /o) to 3 decimals for

( R-ro) /,j - -3.9(0.1)4.0,

r 0 /(T =O.1(0.l)6(0.b)l0(l)20

Burington and May (1953): P(R/a,'r0 /cu) to 3 decimals

(4 decimals for P .' .01) for Ru = 0(0.1)1(0.2Q3,
ro/e *-- 0(0.1)3(0.2)6

DiDonato and Jarnagin (1962): R/u to 7 significant
figures fo, r0 ,r "- 0(0.1)5(0.2)10(2)20(5)120,
P = 0.01(0.01)0.99 .

Solomon (1953): Figure 1 depicts P = 0.05(0.05)0.95
graphed over ranges 0 f 10 (horizontal

axis) and 0 < R,,(; -_- 8 (vertical axis)

Rice (1945): Figur'e 7 depicts r 0 io = 0,1,2,3,5,-

graphed over ranges 0.0001 ! P _ 0.9999 (vertical

axis) and -4 : (R-ri0 ),/' 4 (horizontal axis)

Groves and Smith (1957): Figure 2 depicts
R/A = 0.1,0.5,1(1)12 graphed over ranges
0 f- r .a lo 9 (horizontal axis) and
.000 1-_ 1 - P < .9999 (vertical axis)

If none of these tables or graphs is available, many approxima-

tions to P(Rui,r 0 /1a) have been oroposed which use funrtions com-

monly available in statistical tables. Gilliland (1962) suggests ap-

proximating P (R/u,ro! A) by the first few terms of the infinite

p (R )/•, r0./ -exp (-r2/2T "2) 2 )n, P 1 2

m -0 /

(r2 2i 2 _

I:I2 (Pn0(r•!2¢ 2 ) 0 pn,.2/2 ))P)(12./2a2)
n -0

where P~ W e-X )u,/u!, the upper tail of the Poisson
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distribution. The more complex second expression may be useful
for hand computation, since it uses values from a single table.

Grubbs (1964a) suggests approximating P(Ricr,ro/u) by looking up

in statistical tables the probability that a chi-squared random vari-

able with [2t 2 ,v] degrees of freedom is less than or equal tot2/v2 2 2 ,2 2 2a:

where t = 1 + r .'2u2 and v = 1 + rg0,,T . Read (1971) cites

a Rand Corporation memorandum which suggests three different -79-

approximations for P(R,/,u,ro0 /'u), depending upon the values of ;A

B/q and r0 !o/. Two of the approximations use exponential ftmnc-

tions, and the third uses whe cumulative distribution function of a
Gaussian variable. it is claimed that the maximumn error is 0.02.

A similar (but more accessible) approximation to P(R/c,r 0 !a) is
given on p. 940 of Abramowitz and Stegun (1964):

i,\ 2 2  /-2r\(1) ~R/~r 0 ~) 4 - R2 'exp 4---4+R2) if R~ 1,

P(- 1 + erf Xl.7) if R- 1,
0x 2

(2) P(R exp(-x 2 /i)

S. 2( + en (x ) if R 1

where x2 R 1/2~ )1
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Finally, Brennan and Reed (1965) suggest a recursive method of

computing the function P (R/o,r 0 ..'o) with the aid of a digital com-

puter to any dces!red degree of aecuracy. Specifically, they replace
the Bessel function I0 (x) by its series expansion

whe re
1 (j2)'n+1 I un1 exp (-R 2 u,/2u 2 ) du

L0

= ~X )n- - ,. 22

nex pA(/R 2. (-'°

Details of the error involved in truncating this series are given in
the orignal paper.

2.1.3 Unequal Variances, Distribution Centered at Origin
Suppose now that1 =y 0  0but l 2. Without loss ofdu

2. 2

the ratio of the smaller vaiac toy thle la~r htic= ay,'x.

Transforming to polar coordinates by setting X'•ax = r cos UJ,
y tai r sin o, the probabilityi of destruction becomes

mhriialx apr
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R/amax 2r,

P(R/ama,c) = (1/27c) r

""a/ 2)))d9r
exp- (r_ /2 os U +sin e/c d9 dr

Transforming to the variable .= ,/2, one obtains

P (R /oa 2c) =(1/2-,c) f r
maxa ,

-exp (_(r2/4c2)((1+c2) -(-c2) cos 6))dq dr

R/
-- (1/c) r0

.exp (-r 2 (1,c2)/4c2) I0 (r2 (1-c2)/4c2) dr

Harter (1960) derives an alternative form of P(R/umax,c) more2 , 9.. .

suitable for numerical integration. Let z = r 4c in the second
equation above, and integrate with respect to z:

I, 17,P(/cRm,•n,•,):- ((l' 2) - (1c2)cos ")7

0

- exp (r2/4c2)((1c 2 )- (1-C 2 ) cos Cj) dQ

The function P(R/umxC) cannot be integrated in closed

form, but is tabulated in several places:

Solomon (1960): P((a2 ,a 1 ),t) to 8 decimals for

(a 2 ,a,)
(.75,.25),(.8, .2) ,( .875, .125) ,(.9, .1),

.95 .05),(.99,.0l) and t = .005(.005).1(.01)1(.02)2.5( .025) 3.5( .05)5( .25)6(.5)7 (1)10.
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To transform to the above variables, set c2 = aI//a2 and

2
(R,/amax) = t/a 2

Grad and Solomon (1955): P((a2 ,al),t)to 4

decimals for (a 2 ,a,) -
(. 8,3 ,. .2),( .9,.I),(.95, .05),(.99,-.0I)

and t .i(.j)1(.5)2(1)5

Esperti (1960): P(R/amax c) to 6 decimals for

R,/•maý = 0.00(0.01)4.99, c = 0(0.1)1.0 •

Beyer (1966): P(c,RI/amax) to 7 decimals for

R'Amax = 0.1(0.1)5.5, c = 0(0.1)1.0 .

Harter (1960): P(R,/!cmax,c) to 7 decimals for

R'/max = 0.1(0.1)6, c = 0(0.1)1.0, and

R/'U m.ax to 6 significant fig-ures for

c 0(.1)1, P = .5,.75,.9,.95,.975,.99,
.995,.9975,.999

DiDonato and Jarnagin (1962): RR/umax to 7

significant figures for c = 0,.1(.05)1,
P = .99(0005) .999(.0001) .9999(.0000 1)
.99999(.000001) .999999

Weingarten and DiDonato (1961): R/trmax to 6

significant figures for c = .05(.05)1,
P = .05(.05).95(.01).99 .

If a y and ax are not too greatly different (say, c ý-: 0.5), it is tempt-

ing to calculate an approximate radius, R, for the circle which con-

tains P of the bivariate probability. Oberg (1947) suggests three

such approximations. He notes first that the ellipse centered on

(0,0) with semi-axes ax( 2 loge(1/(1-P))/'
2

and ay (2 loge (I/(1- P)))1/ 2 contains exactly P of the bivariate

probability, and suggests using the radius of the circle with the

same area. This gives

RI= (2caxuY loge (1/(lp))) '2 .

-: If ax = CT it has already been proved that P = 1 - exp (-1 2 ,272)

If 2 o2 is replaced with (T x + (7, a second approximate R is obtained:

I:_____ ________ 
_
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= (c< + G2) (log" (1/(1- P)))"' 2

Finally, one can combine R1 and R2 into a third estimate:

R 3 = 01~ + R 2)/2)

Oberg gives tables showing the relative performance of R 1, R2 and

R3 for 0.1•_ P• 0.9 and 0.5 <- c 5 1. However, much better ap-
proximations (not dependent upon c being near unity) are available.

Gilliland (1962) suggests approximating P(R ) by the first
few terms of the infinite series

00

P(R,/max,) c 2c 2 m) 2 -21-
1+ c m=

(l--c) P2 m( 1+c 2 )R 2 /4c 2)

00

where, as before, Pm(X) = e-;k xu/u!, the upper tail of the ]
u=m~

Poisson distribution. Grubbs (1964a) approximates P (R,/mamc)

by means of the probability that a Gaussian distribution of zero
mean and unit variance is less than

41/3 - 223 a + F2 ))'~ 4 +4)/9(02 2)~

This is the Wilson-Hilferty transformation of a chi-squared random
variable to a Gaussian random variable, and is given in Equation
(20) in the paper by Grubbs. Lilliefors (1957) also approximates

P (R/aby the first few terms of an infinite series. Note
that his approximation requires no tabulated functions whatever:

P R'/crmax' C) Crxnl ( 1)n~ R 2 /2-n 2) (
X (R /2%) an(n)

X n-i
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where an(n) = 1,

aj(n) = Aa jl(n) + Bb 1 (n), i < j n-i1

b n(n) 0,

bj(n) ((j-1)/j) (Baj+ 1 (n) + Abj+l(n)), 2 < j _ 5n-l,

and where 2 , 2) 2( 2y)I-0'•
A 1 (R 2 "4cT and B ((Cry 2 12 ) /2

The first few al(n) are:

a1() 1,

al(2) = A,
2 2al(3) =A +B 2,

al(4) A3 + 3B 2 A/2,

al(5) = A4  3B 2 A2  3B 4 /8

However, higher al(n) become increasingly tedious to compute.

2.1.4 Unequal Variances, Offset Distribution

If x0 4 0, v 4 0 and u2 1 2 the destruction probability P is

a function of four variables whici can be selected in various
(equivalent) ways. Gilliland (1962) has derived the following ex-
pression for P:

1, x- 2 +2 BO mr ( ( 1 _c 2 22 
/ 4 c2 )

2-,. cK 2  2)1~ ETI

where c and Pr o(X) are defined as before, and

B (4c2!(1+c2))m+1- D
2m 2 m!
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where

SM-1 2 2 J / 2  i-J
D 6-c 1 xo0/ x) 2y2)m-

4c i(2) (2m-2i.-2j)!

G(i,2j,2m-2i-2j)
with

2-

G(p,q,t) = cosP2v oq5 , sintO dO

Again, several tables are available.

DiDonato and Jarnagin (1960): R is given to 5
significant figures for P = .05,.2,.5,.7,
.9,.95, x0 = 0(0.25)1(1)6,8,10,20,50,

Y0 = 0(0.5)1(1)6(2)10(10)30,50,80,120, and

1,'c = 1(1)8,10 .

Groenewoud, Hoaglin and Vitalis (1967): P is given to
5 decimals for x0/ - 0(0.5)5, y0..y = 0(0.5)5,

'c = 0.1(0.1)1, and R,-'a = 0 for those values for
which P is nearly one.

Rosenthal and Rodden (1961): P is given to 5
decimals for c = 0.2(0.2)1, x0!•x = 0(0.5)3,0~
y0/cy = 0(0.5)3, and R/umax = 0 for those

values for which P is nearly one, in steps
of .05.

Lowe (1960): P is given to 3 decimals. For
various choices of 1/c and R/uv, tables of
64 entries of P are presented in which 8
values of x 0 /x and 8 values of yioyG are

selected to cover the region in which the
variation in P is applicable. The following
36 tables are given:

1/c R/y Range of x0,,j Range of y0 '"..
y 0' x

1 1 0 to 3.01 0 to 3.01
1 2 0 to 4.06 0 to 4.06
1 4 0 to 6.02 0 to 6.02
1 8 4.5 to 10.03 0 to 2.03
1 8 0 to 10.01 2 to 5.01
1 8 0 to 8.68 5 to 10.04
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.. .. 1/c R,"cy Range of x0/ /x Range of yo /"

2 1 0 to 2.52 0 to 3.01

2 2 0 to 3.01 0 to 4.06
2 4 0 to 4.06 0 to 6.02
2 8 0 to 6.02 0 to 4.55
2 8 0 to 5.46 4.5 to 10.02
2 16 4 to 10.02 0 to 7.00 A

2 16 0.75 to 9.29 7 to 12.81
2 16 0 to 7.28 12 75 to 18.00

4 1 0 to 2.31 0 to 3.01
4 ) 0 to 2.52 0 to 4.06
4 4 0 to 3.01 0 to 6.02
4 8 0 to 4.06 0 to 10.01
4 16 0 to 6.02 0 to 10.01
4 16 0 to 5.18 10 to 18.05

4 32 4 to 10.02 0 to 15.05
4 32 2.15 to 9.15 15 to 24.03
4 32 0 to 7.42 24 to 28.55
4 32 0 to 5.88 28.5 to 34.03

8 1 0 to 2.17 0 to 3.01
8 2 0 to 2.31 0 to 4.06
8 4 0 to 2.52 0 to 6.02
8 3 0 to 3.01 0 to 10.01
8 16 0 to 4.06 0 to 18.06
8 32 0 to 6.02 0 to 20.79
8 32 0 to 5.11 20.75 to 34.05
8 64 4 to 10.02 0 to 30.03
8 64 2.9 to 9.13 30 to 42.53
8 64 1.5 to 8.01 42.5 to 52.51
8 64 0 to 6.58 52.5 to 58.8
8 64 0 to 5.25 58.75 to 66.03

Grubbs (1964a) gives the only reasonably simple hand-calculation
for P. He shows that P is approximately equal to the probability
that a Gaussian distribution of zero mean and unit variance Is
less than

S~ t)1 - (
2 2 2)

izes the formula of Grubbs 4ven in the previous section.

I]

S% .. ...... 1-/2
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2.1.5 Targets With More Than One Point

If the target consists of a single point, it is obvious that the
weapon should be aimed at it in order to maximize the probability
of target destruction - in other words, x0 and y should be chosen

equal to zero if possible. Suppose, however, that the target consists
of more than one point; where should one aim a single weapon in
order to maximize the probability that it lands within a distance R
of at least one of the points?

Consider the simplest possible configruration: two point tar-
gets located at (-d,0) and (d,0). The probability density function of the
impact point of the weapon is assumed to be circular Gaussian with

2 2 2
~X = ,jy' =ý c Gilliland (1964) proved that if R • d - -T, then the opti-

mum aim point is (0,0). Marsaglia (1965) derived the general solu-
tion to the problem. He provides a , "'aph dividing (R/a(,d/,!) space
into two regions - in one, the optimum aim point is (0,0), and in the
other the optimum aim points are ±(z,O), where z," is the positive
solution to the equation

niin( 1,d./R)fnln~'d'R) 1 (-y2)-lI/2Y sinh (z,/!'Q(Ry4-d)A/

exp (dRy 1//a2 ) dy =0

If the target consists of more than two points, the problei i of
finding the optimum aim point becomes much more difficult. (illi-
land (unpublished work) has proved that if three target points are
located at the vertices of an equilateral triangle with mutual sepa-
ration d, and if R • d - 4T/(l+-f'r3), then the optimum aim point is
at the center of the triangle. This is k. somewhat stronger result
than the one given in Gilliland (1966), which requires R 7 d - (.

In the latter reference, he also proved that if a target consists

of a symmetric array of points around the origin (xi,Yi), (-xi,-yi),

i = 1,2,.. . ,n, and if these points have the properties
.2 2~ ý1 2 Crj2 1y~j2\ /2

R :- (x.4 Y•) • (for all i) and ((xi-x.) - 2yi-1j)1) 2

(for all i j j), then the optimum aim point is at the origin. The
latter property can be eliminated if the first property is replaced

by xi + Yi)' -5 a - R. Gilliland (1968) has derived analogous re-

sults for a class of bell-shaped probability density functions of the
impact-point of the weapon.
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2.1.6 Models of Aiming Error Associated With a Salvo

In Sections 2.1.1 through 2.1.4, various models of an attack
upon an undefended point target were introduced. These models
explicitly formulated the widely-held belief that it is reasonable to
regard weapon aiming-error as the sum of two components:

1. a constant offset in aim, equal for all weapons in the
salvo,

2. a random error taken from a Gaussian probability
density function with standard deviations (Tx and ary, and
independent from one weapon to the next.

Furthermore, it was assumed that the constant offset was known
beforehand. This assumptioi is rather unsatisfactory (if the off-
set is known, %hv not correct for it'?), and in the models to be pre-
sented later in tliis chapter, it is usually assumed that the constant
bias is a random value drawn from another Gaussian probability
density function with known mean and variance.

Helgert (1971) points out that a more realistic model of
weapon aiming-error should include not only the above two compon-
ents but also a time-varying component which he calls aim-wander.
This reflects the physical fact that the path traced by" the inter-
section of the g-un barrel mean line of sight and a plae perpendicu-
lar to it would, as a function of time, appear to wander ih a mnore
or less random fashion. In principle, this wander can be mathe-
matically modeled by a sequence of bivariate random variables
that are partially correlated with each other (i.e., neither perfectly
correlated with each other, as in (1), nor completely uncorrelated
with each other, as in (2)). However, it may be difficult to specify
the precise correlation in any practical problem; even more
important, the mathematical complexities introduced by such a
model make it impossible to calculate such quantities as the ex-
pected fraction of an area target destroyed by a salvo of n weapons.
Helgert, in fact, finds it necessary to calculate a much more ele-
mentary measure of target damage: the probability that a speci-
fied subset of the n weapons will impact within the target area,
given the partial correlations. Perhaps the most interesting of his
partial correlation models is a Markov model - one in which the
probability that the ith round hits the target depends only llk)on the
success or failure of the (i-l)st round. It is an open question as to
whether the Markov model is superior to the two-compunent model
of weapon aiming-error discussed above: this is a matter for
further research.

2.2 EXPECTED FRACTIONAL DAMAGE OF A UNIFORM.-
VALUED CIRCULAR TARGET

As in Section 2.1, only cookie-cutter damage functions will be
considered. If the radius of the damage function is large with re-
spect to the size of the target, the latter can be approximated by

LI
I

a I I I I I
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a point. However, this is not always the case - often, only a frac-
tion of the target is destroyed when a weapon hits it. Assume a
target which has uniform value anywhere within a distance K of the
origin (0,0) in the xv-plane, and zero vaiue outside K. Let the
probability density function of the impact-point of tho weapon lbe

p(x,y) and let a point (xVt't) in the target be destroyed with proba-

bility d(x-xt,y-yt) by a weapon impacting at (x,y). By analog'y with
tile generalizaeion mentioned in Section 2.1, d(x-ty-yt he, x ]y¾ may. he

taken to be the expected fractional damage at the point ( xt,Yt.

Then the expected fraction of the target destroyed by a single
weapon is equal to

(x 2v 2) •K

p(x,y) dx dy dxt dyt

If a cookie-cutter damage function is assumed, this simplifies to

IIE(f) =.I I3jf p(x,y) d~xdyckxt dvt,

S1 '/2

where A is the re-ion 2y. ) •K and B is the region
"- X "-t)2 4 " "(y-yt)2)12 R. As before, p(x,y) is ordinarily as-

sumed to have a bivariate Gaussian probability density function.Because of mathematical difficulties, tile 010 e,,eer ally' con1sideredA

ill tlis section is

p(X'2) exp (X . (x 12)

which is circularly symmetric and centered on the target.

Although the material in this section is discussed in ternis of
a uniform-valued circular ta:get, it can be equally well applied to
a point target having an unknown location. Specifically, assume
that the location of the point target is given by a probability density
func ion assigning uniform probability insidc the circle
I2 1,22 2 K and zero outside it. The uncertain location of thet
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point target might be due to a map error, or the target might bemobile, having last been spotted some time before the attack. In
the latter case, the radius K is equal to the maximum distance the
target could have covered in the elapsed time. (Note that a knowl-
edge of target direction might be helpful in reducing the unknown
area.)

2.2.1 One Weapon Impact, Gaussian Aiming Error
The expected fraction of the target covered is a function of

R/.cT and K/ci. Guenther (1964) show- that it can be written

E(f) ( (i (R/K)') P(R/C,,K"ý':)

-(R(/K) exp (-(R 2 +K2 ) 2,2) o I(RK,;'u,)

where

P(R/"cKic,2 (1'j) -222)2

R1 " exp K-r2  2j 2) 10 (rK , "'2 ) dr
0

(In = W n (iz) exp (--ni/2) is a modified Bessel function of the first

kind of order n.) P(R,/",K/iY) is the probability of destruction of a
point target by a weapon with a circular Gaussian distribution and
offset aiming-point distance K. Ih other words, the tables of
P(R,, described earlier can be used to evaluate E(f). One

table gives E(f) directly:

Germond (1950): E(f) to 4 decimals for
K/i u 0(0.1)6.5 R"(Tr 0(0.5)3(1)6 and for
(K-R)!u -= -3.2(0.1)3.5, R,/" -= 3(1)6(2)20

Smith and Stone (1961) derived E(f) under the modified assumption
that the center of p(x,y), the wcapon impact-point piobability den-
sity function, is offset a distance r 0 from the ccnter of the target:

Eoffset(P = 2-1,KR 1 'r) CXp (-r '2)
0

J 0(,'ia J j(Kr /(T) '12(R., 'o) dr
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where J n(z) is a Bessel function of the first kind of order n.

If one is interested in the probability PC that the fraction of

the target destroyed exceeds c (instead of E(f), the expected value
of this fraction), one can use a pair of graphs supplied by Solomon
(1953). Actually, Solomon considers a generalization of the above
problem; he allows the mean of the impact-point probability den-
sity function, p(x,y), to be circular Gaussian offset a distance r 0

from the center of the target. His graphs yield Pc as a function of

R/'a7, K/7 and r 0 ./ . E(f) can be approximated by reading off the

value of c corresponding to PC - 0.5 (the median) in Solomon's

graphs. To accomplish this, let a = (1.2 - (K/a)) /(R,/u), enter with

this value on the abscissa of Solomon's Figure 2, and read off the
appropriate c (a function of a and K/,R) on the ordinate.

2.2.2 Multiple Weapon Impacts, Gaussian Aiming Error

What is the expected fraction destroyed of the target if there
are n weapons directed at it? Guenther (1966) assumes that each
weapon has an impact-point error which is the sum of two inde-
pendent components: an offset aiming-point error (the same for
all wcapons), and a dispersion error around the offset aiming-point
(different for each weapon). Such a complex model is not abso-
lutely necessary; the offset aiming-point error can be lumped in
with the point target location error. In other words, the impact-
point errors can be regarded as independent samples from a com.-
mon probability density function p(x,y). However, since independ-
ence does not hold,

E (1 - E(f))n

In general, E (f) will be smaller than the expression on the right.

The following derivation of E (f) is due to Jarnagin (1966). Letn.
P(R,.f,r/cr) denote the probability that a point r distant from the

origin is destroyed by a weapon; in Section 2.1.2 this was seen to
be

P(R/o,r/a) -1 exp (-r 2 /20 2 )

(=(

I Ix I_112(1 I Ir If (Ix!
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The probability that this point is destroyed by one or more of n

indpl)endent weapons is 1 - (1 - P(R, 'c,r/.o0 ). To determine the

expected fraction of the target destroyed, this expression must be

integrated over the target area: t y2) =r K.

.2• ,K.

En(f) (i -K 2 ) 1 - P(R'.",r ,).)fn r dr dO

"0 0
K

1-(2.'K2 ) I (1- P(R"(j,," '(j)') r dr
0

En(f) has been tabulated by Jarnagin (1965) as a function of

R,; = 0.005(0.005)0.05(0.01)0.1(0.02)0.2(0.05) 1(0.1)2(0.2)4(0.5) 10,
K ' = 0.05,0.1(0.1A4(0.5)12, and n - 1(1)20. The value of n (when
less than 1000) has been tabulated for the same ranges of R/a and
K/cr, and corresponding to En(f) = 0.05(0.05)0.95.

In a related paper, Jarnagin and DiDonato (1966) consider a
somewhat more involved salvo attack on a uniform valued circ,,-"
target. Specifically. they assume that each weapon has an erro: -
which is the sum of two independent components: -A

1. An offset aiming-point common to all n weapons, with a ]
probability density function which is Gaussian, centered

on the target, and with standard deviations 2 = 2y =2. U
2. An aiming-error independent from weapon to weapon, i

with a probability density function which is uniform in-
side a circle of radius D centered on the offset aiming-
point.

They evaluate E (f), the expected fraction of the target destroyed,

by numerical methods. Jarnagin and DiDonato (1965) present their
results in an extensive set of graphs.

2.2.3 Offense Can Place All Weapons Exactly

For the sake of completeness, the reader should be aware of
a body of mathematical literature which was originally developed
for purposes unrelated to weapons attacking undefended targets,
but which may have a bearing upon the latter problem. Specifi-
cally, assume that the offense can place his n weapons on the
uniform-valued circular target without any aiming errors whatso-
ever. How shall he place his weapons on the target in order to
maximize the fraction of value destroyed? Assuming that K > R,
two extreme cases can be distinguished:
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1. if n •n 0,(K/R), the offense can place all his weapons

completely within the target botundary without any
weapon overlapping any other;

2. if n -n 1 (K/R), the offense can cover every point of
the targ-et with at least one weapon.I

In the literature, these are referred to as packing and covering
problems, respectively.

On pages 67 and 93-4 of his book,, Fejes T6th (1953) gives
bounds for packing and covering rather general regions with iden-

tical circles. These may be sp~ecialized to yield bounds for n 0 and

3)T (K 'TW - 1)2'- n0 (K R' 'v3K'i

21 2

Unfortunately, it is not easy to determine the exact values of
n0 (1K./R) and n1I(K./R) unless K/R is quite small. Since n can onlyI

go up by integral jumps, it is more convenient to turn the problem
around and specify the largest targret circle which can be comi-
pletely covered by n weapons, and the smallest target circle into A
which n weapons can be packed without overlap.

The largest target circle which can be completely covered by
two weapons has a radius K R: thus two weapons have no advant- '
a ge over one in covering a circle. Three weapons can be placed
at the midpoints of the sides of an equilateral triangle inscribed in
a circle of radius K = 2R/13l, and four weapons at the midpoints of
the sides of a square inscribed in a circle of radius K'=-,2 R.
These placements clearly cover their respective circles. The cor-
responding K are the largest for which complete coverage is pos-
sible; however the proof is less trivial than it might appear.

However, this sort of construction is no longer available for
five weapons. In fact, the five-weapon coverage problem is not
easy to solve. Intuitively, one might think that the best coverage
is obtained by placing the five circles at the vertices o1 a pentagon
of such a size that all five circles pass through the center of the
pentagon; the radius of the circle covered by, this arrangement is
K = 2R cos 36' = 1.6180OR. However, Neville (1915) proved that the
radius of the largest target circle coverable by five weapons is
K = l.6409R; to find this constant, it was necessary for himi to
solve four nonlinear equations in four unknowns. (Specifically,
each equation consists of the sumns and differences of circular
functions; the unknowwns appear as linear functions of the argu-
ments.) The five-circle covering problem was a popular diversion
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at English country fairs and shows of more than 50 years ago. For
a nominal entrance fee, the player was invited to drop 5 circular
discs on a larger circle so that it was completely covered; if he
succeeded, he was awarded a much larger sum of money. Of
course, the operator of the concession eliminated the "obvious"
solution by setting the radius of the larger circle equal to (say)
1.63R.

The smallest target circle which can contain two non-
overlapping weapons has a radius K = 2R. The corresponding radii
of the smallest target circles containing three, four, five, six and
seven weapons are R(1+-,2/•3), R(1,12), R(l+sec 54'), 3R and 3R,
respectively. For n greater than seven, the solution to the packing
problem is not known.

2.3 EXPECTED FRACTIONAL DAMAGE OF A GAUSSIAN TARGET

In the preceding section the value of the target was consid-
ered to be spread uniformly throughout the interior of a circle of
radius K. It is perhaps more realistic to consider targets which
have greater value per unit area concentrated near the center and
less near the edges. Such a target can be approximated by a
Gaussian value density function:

T/Yt) = (1/2r2) exp(-(x2 + Y2)/2 0,2)

2.3.1 One Weapon Impact, Gaussian Aiming Error

The expected fraction of total value destroyed by a single
weapon is equal to

E(f- fM f f f T(xtyt) d(X-xty-Yt) p(xy) dxt dyt dx dy

Assume the cookie-cutter damage fuPction of previous sections,
but a Gaussian probability density function of weapon impact-points.
Then the above simplifies to

E(f) f Pl (x,y) dx dy

x 2 +y2 ) •R
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where

Pl(X,y) = 1

_______2 (yy' 2 N

To see why this is so, remember that one can replace the Gaussian
target with a point target having its location determined by a ran-
doin variable with a Gaussian probability density function. Because
the sum of two independent Gaussian random variables is again
Gaussian, the position of the target relative to the impact-point of
the weapon is distributed according to pl(x,y). In other words, all

the derivations in Sections 2.1.1 - 2.1.4 can be immediately applied
to the Gaussian target if the probability of target destruction is
reinterpreted as the expected fraction of total value of the target

destroyed, wvith u 2 and cr2 replaced by u2 2 and cria2
respectively. y

2.3.2 Multiple Weapon Impacts, Gaussian Aiming Error

However, this simplicity does not carryl over to the problem
of determining En(f) when n weapons are directed at the target. To

simplify the problem, assume that the weapon impact-points have
a circular Gaussian probability density function centered on the

target, and set jx -= rv- =2 as before. From McNolty (1967), one

obtairns the expected fraction of total value of the target destroyed:

E~n(f) T1'~4 x - 2 'u~
0 0

(I - (1- P(R/cr,r/A))n) dr dO

1 "nr 2 r2 "

2 2n----i r exp 2

-0 2 n

(_TtI

t ex !Y 1( d d
fR1
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nf !
As before, En (f) : 1 -1 - E W) Actually, McNolty gives En(f)
when there is also an offset aiming error; but this additional com-
plication has been omitted. If one talks in terms of a point target
having an unknown location given by a Gaussian probability density
function, McNolty puts down for the record three other probability
expressions:

a. The probability that exactly m weapons out of n will im-
pact within distance R of the target.

b. The expected number of weapons required to obtain ex-
actly one impact within a distance R of the target.

c. The probability that n or fewer weapons will be required
to obtain exactly one impact within a distance R of the
target.

The latter two quantities are useful only if the offense has a shoot-
look-shoot capability; that is, if he can observe whether or not the
target has been destroyed before committing another weapon. (It
is hard to see how this would happen when the offense cannot even
locate the target; but the target could perhaps be a hidden radio
transmitter.) It is difficult to see why McNoity included the last-
mentioned probability, for it is identical to En (f: both are equal
to 1 - Pr(first n weapons all miss the target). If the offset aiming
error is zero the expected number of weapons required to destroy
the point target is

2 
O

E(n) = r exp r

U7T 20r

I--1

In general, this is larger than the inverse of the single-weapon

probability of target destruction, 1 - exp (_R 2 "2 ( 2 + a2))

Apparently, the quantity En (f) has never been tabulated for

targets having a Gaussian value density function. The following
short table was obtained by simulation:
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Salvo Size n = 2

R/crT 0.25 0.5 0.75

0.6 .224 .235 .201
1.2 .574 .582 .563
1.8 .834 .832 .814
2.4 .949 .951 .942
3.0 .990 .988 .985

Salvo Size n = 5

R!cT 0.5 0.75 1.0

0.4 .225 .214 .187
0.8 .521 .551 .516
1.2 .728 .773 .763
1.6 .865 .892 .893
2.0 .945 .956 .957

Salvo Size n = 20

S,/Ul T

R/oT 0.25 0.5 0.75 1.0 1.5

0.2 .151 .209 .201 .176 .113
0.4 .280 .447 .531 .499 .386
0.6 .404 .595 .716 .740 .640
0.8 .528 .706 .817 .864 .828
1.0 .639 .792 .882 .924 .924
1.2 .735 .856 .926 .958 .970
1.4 .822 .900 .953 .975 .984

These tables were derived by the following Monte Carlo procedure.
Obtain from a table of random Gaussian deviates (of mean zero and
variance unity) 2n + 2 independent values X,Y,Xl,Yl, ... ,x
Calculate the quantity

min ((X + (a/UT)Xi)2 (Y +(C/ a T)2 2

Repeat this procedure 5000 times and arrange these minima in or-
der from smallest to largest. The table entry is the fraction of the
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minima that are less than R/!T; i.e., when n was 2 and c! T

was 0.25, 1120 of the 5000 minima were less than 0.6. As is typi-
cal of a Monte Carlo approximation, the accuracy is low. The
standard deviation of the estimate indicates that the above values
are accurate to about two or three places.

Those interested in other approximations for E n(f) can use an

approximate method developed by Groves and Smith (1957). These
authors outline a crude numerical integration of En(f). They ap-

proximate the Gaussian value density function with a set of ten
rings each containing one-tenth of the target value. The ith ring
has a radius, ri, such that

0 - 2) exp r'2.T2u dr

0

(This is quickly read off from the curve labeled b.c/A 0 in their

Figure 1.) For each ring, the expected fraction of value destroyed,

En(f,ri) = 1 - (I - P(R,/a,ri/i)) n is readily calculated with the aid

of a table of P(R/u,r/o) as defined in Section 2,1.2. Finally,

10

En(f) = En(fri)/10"
i=l

Note that Groves and Smith actually supply graphs for a more gen-
eral problem: an offset aiming point, b.

2.3.3 Non-Gaussian Aiming Error
Somewhat more complicated attacks on Gaussian-valued tar-

gets have been considered in the literature. McNolty (1962) con-
siders an attack by one weapon which has an error whfich is the
sum of two independent components:

1. An offset aiming-point with a gamma, beta, or Maxwell-
Boltzmann probability density function.

2. An aiming-error with a probability density function
which is circular Gaussian with mean at the offset2 2 2
aiming-point and variance u2 2 U

Unfortunately, the three resulting expressions for E(f) are quite
involved and laborious to compute. No tables or approximations
are available. In a later reference, McNolty (1967) derives En(f)
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for attacks by n weapons in which each weapon has the same offset
error (1) drawn from the probability density function

g(r.."ko' = (2,1-10 (/o) N r,2 .- 1 exp (-x/"or 2 )

but an independent circular Gaussian aiming error (2).

Holla (1970) derives complicated expressions for the proba-
bility of target kill under the assumption that the offset aiming-
point is a random value drawn from the noncentral chi-square prob-
ability density function (the square root of this random variable is
distributed according to the probability density function discussed
in Section 2.1.2). Holla claims that for certain special cases the
kill probability can be easily ascertained. It is unclear whether
any of McNolt,'s or Holla's models of aiming-point error is likely
to arise in a real-world bombing problem.

In an attempt to derive a more tractable expression for En(f),

Duncan (1964) somewhat modified the assumptions of the problem.
lie postulates a target having a circular Gaussian value density

function with variance (2, but replaces the circular Gaussian prob-

ability density function of weapon impact-points with a uniform
probability density function of impact-points inside a circle ,f
radius D > R centered on the target. Specifically, he ignores edge-
effects by assuming that the entire lethal area of each weapon,

7R2, falls at random within the circle of radius D. The expected
fraction of total .,alue destroyed is given by

E,(f) = 1- exp (-D 2 1/2(3 2)) (1 - exp (-nR 2 /D 2 ))

Duncan then determines that value of D which maximizes
E (f). Differentiate E (f) with respect to D, set the result to zero,11n
and solve for D. One obtains the optimum value of D:

Dopt.'UT) = (R ý(JT)

The corresponding expectation is

En(f) = (1 - exp (-,\-'2 (R!o-))') 2

2.3.4 Offense Can Place All Weapons Exactly

Suppose that the offense can place his n weal)ons on the
Gaussian-valued target without any aiming errors whatsoever.
How should he place his weapons on the target in order to maximize
the expected fraction of value destroyed? If he has only one
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weapon, the answer is obvious: place it at the center of the target.
The corresponding E 1 (f) is

EI(f) = 1 - exp (_R 2 /2a 2 )

For two weapons, the problem of positioning has been solved by
Marsaglia (1965). If the destruction radius of a weapon is equal to
R = ROVThe shows that one should place the two weapons on oppo-

site sides of the center of the target, each offset a distance d = dOcTT
from the center, where

1 -d R y
fd/R ( i~y2)- '2 y e 0 0  d =O0

He does not give the corresponding value of E 2 (f). For three or

more weapons, the problem remains unsolved. k

Gilliland (1966) has examined the easier problem of maximiz-
ing the expected fraction of value destroyed when the centers of the
weapons must all be at least 2R apart (no overlap allowed). If
R/i T <- 1, two weapons should be placed on opposite sides of the

origin, each offset a distance R from the origin: if R/cUT -, 2./(1,r3),

three weapons should be placed at the vertices of an equilatera1 tri-
angle with sides 2R centered on the origin; if R.!•T - 1/13, four

weapons should be placed at the vertices of a rhombus with sides 2R
and smaller diagonal 2R centered on the origin.

2.3.5 A Generalization of the Gaussian Target

McNolty (1968a, 1968b) introduces a family of targets having
a value density with non-uniform phase; the Gaussian target (with
uniform phase density) is a special case. Specifically, he assumes
that the piobability density function of target value with respect to
the origin of coordinates has the following radial component:

g(r) ((xrIQp'Q-l) exp )2./2ý)- (X./2)r 2 ) IQ_ 1 (1,r)

where I (r) is a modified Bessel function of the first kind of order

n. Note that g(r) is a function of the three parameters X '> 0, Q -> 0
and -- 0. If one makes the additional assumption that the x-
component and the y-component of the target value density are in-
dependent and have identical probability density functions, then one
can derive the phase component of the probability density function
of target value:
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h(e) 1 ('sin 2 0/ 2 1Q- exp (.2 /2)) /2)2i+2j

j=0 i=0

r(Q+i+j)sin a Cos ((Q/2).i) r((Q/2)+j).

Transforming from polar to rectangular coordinates, the x-
component of the probability density function is

f(x) = 2 Q/4-3/2// /)

Sexp (-(.2/4x) - (X./2)x 2 ) IQ!2_1 (4 Ix,/\f2))

If one assumes a cookie-cutter damage function and a circularly
symmetric Gaussian probability density function of weapon impact-
points centered at the origin of coordinates and with variance
2 then the expected fraction of total target % alue destroyed is

U ,

E'f) (~y/i~ 2 ))Q exp (.1/,E(.1R 2a)
i=1

.11(Q+i,Q,.'2a2,/2(,+A 2))./i(l+X•g2)i iBiQ

where 1Fl(x,y,z) is the confluent hypergeometric function, )'(x,y)

the incomplete gamma function, and B(x,y) the Beta function
F(x) T(y)/F(x+y). The corresponding expected fraction destroyed
by a salvo of n weapons, E (f), is not known.

n
One can gain a little insight into McNolty's generalized tar-

get value densities by considering special cases. If one sets Q = 1,

0 and X = 1/ak, one has a Gaussian-valued target centered at
2the origin with variance UT, and the expected fraction of total tar-

get value destroyed reduces to the expression derived at the start
of this section:

E(f) = - exp(-R2/2(+2 2))

The parameter X is a scale parameter, inversely proportional to
the area covered by the target (more accurately, to that area with
a value density greater than a certain minimum amount). The
parameter •, is a non-centrality parameter, denoting the distance
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from the center of the target value density to the origin of coordi-
nates. The parameter Q specifies the non-uniformity of the phase.
For example, if Q = 3 /2, the value density resembles a four-leaf
clover (one petal in each quadrant); if Q -- 1/2, the value density
resembles the letter X (aligned with the two axes).

The weapons analyst who has a good knowledge of the value
density of his target (and who plans to fire only one weapon at the
target) may wish to approximate his target using one of McNolty's
models. However, if his knowledge of the target is rather vague,
he may be better ad- ised to assume the target both uniform-valued
circular and Gaussian, and determine how much difference exists
between these two simple models.

2.4 THE DIFFUSED GAUSSIAN DAMAGE FUNCTION

By far the most frequently-used damage function has been the

cookie-cutter: d (Xxtx,y-yt)ii (xx) (Y~yt) 2 ) : R and

d(x-xt,y-yt) = 0 otherwise. Its wide popularity seems to be due to k
conceptual simplicity; furthermore, Weidlinger (1962) has devel- -
oped a physical argument involving cumulative damage from repeat-
ed impacts which appears to justify its use. However, the previous
three sections show that a cookie-cutter damage function frequently
leads to mathematical difficulties. Analytic expressions for proba-
bility of target destruction or expected target value destroyed usu-
ally cannot be obtained, and one must resort to tables or approxi-
mations. Is it possible that other damage functions might lead to -1
easier mathematics ?

2.4.1 Alternative Damage Functions .
A wide variety of different damage functions have, in fact, i42

been proposed. In general, a damage function is circularly sym-

metric (a function of r (x-xt) 2 alone) and non-
increasing from one to zero along any radius outward from the ori-
gin. (However, there have been exceptions to even these modest
restrictions - for example, Bronowski and Neyman (1945) analyzed
the coverage-properties of a rectangular cookie-cutter.) The fol-
lowing have been proposed by Guenther and Terragno (1964), Hunter
(1967) and McNolty (1965):

d(r) = exp (.-r2/2b2 )

d(r) = exp(-br) , b "> 0

d(r) max (b _r O)) 1/2"'b , b - 0

I7
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d(r) = max(I-r/b,O) , b '> 0

d(r) = min , (1,-R-.1 2)

dý=min (1, exp(1(r_ R )1/2b))

k

d(r) = cxp # - r 2 12 , c1 2- O, 0,

dc(r) = 1, 0 -_ r • R: d(r) = c exp (-r 2./2b 2 ) , c " 0, r'- R

Of these alternative damage functions, the first is the most fre-
quently encountered in the literature. For convenience, it is called
the diffused Gaussian damnage function. (Morgenthaler (1961) calls
it the diffused exponential, but his terminology seems more appro-
priate for the second function.)

For the reader who desires a damage-function somewhere be-
tween the cookie-cutter and the diffused Gaussian the Operations
Evaluation Group (1959) and Galiano and Evcrett h1967) have pro-
posed a family of damage functions expressible in terms of the
Poisson distribution:

i1-

di(r) = exp ('ir 2 /2b 2 ) E (ir 2 /2b 2 )jj!

= 1 - P _ (ir 2 /2b 2 )

Note that d1 (r) is the diffused Gaussian damage function and do(r)

is the cookie-cutter. If one assumes a target with a circular Gaus-

sian value distribution having a variance c2 2 and a circular Gaus-TY
sian probability density function of weapon impact points centered on

the target with variance ( 2 , Galiano and Everett (1967) show that
the expected fraction of target value destroyed by one weapon is

E (f) 1- (i(72 + 4)/(b2 + 2+

The Operations Evaluation Group (1959) provides a graph of El(f)
for i equal to two, generalizing it to an offset aim point.
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The rest of this section (with two exceptions: Read (19'71) and
McNolty (1965) at the end of Section 2.4.2ý is restricted to the dif-
fused Gaussian damage function.

2.4.2 One Weapon Impact, Various Target Characteristics

Assume that the probability density funct.;on of weapon impact

points is Gaussian centered on (x0 ,y 0 )and with variances 02 and
assmne also that the target is centered on (0,0) and has a circular

Gaussian value distribution with variance .2 The expected fraction

of the target value destroyed by a single weapon, E 1 (f), is deter.

mined by a characteristic-function argument in McNolty (1967):

x22
2-r 1r2,YO

2  b2 ,r , (, 2 + 32 b2 c2)•. 2

E 1 (f) also represents the probability of destruction of a point
12 

_target located at (0,0) if one sets T - 0 in the above expression.

Note the great analytic simplicity gained by changing from a cookie-
cutter to a diffused Gaussian damagc function; no longer does one
have to deal with tabulated functions such 7' P R /a,ro./ n and

P (R /-rmax c"

If the target consists of two or more isolated points, how
should a single weapon be aimed in order to maxinize the proba-
bility of target destruction? Consider the simplest possible con-
figuration: two point targets located at (-d,0'. and (d,0). Assume
that the probability density function of the impact-point of the weapon

2 2 2
is circular Gaussian with cx = . Generalizing an arg-ument

used in Operations Evaluation Group (1959), it is not difficult to
show that the probability of destroying both targets with a single
weapon aimed at (d-c,0), 0 <_ c -< 2d, is

P(both) b2  d2  (d-c) 2

2cr 2 ,2 b2 c 2 '

This is maximized bv setting c = d: in other words, the ol)timum
aim point is at the ori.gin. However, it appears qui'wo difficult to
find the aim point which maximizes the correspunding probability
of destroying at least one zarget.
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2 2 2When = a = u and x= 0 = 0 (a circular Gaussian distri-

bution of impact-pioints centered on the Gaussian-valued target),
McNolty (1965) also derives E 1 (f) for the diffused exponential

damage function d(r) = exp(-br):

i~ _'2

When 2 = 2= 2 and Y. 4 0) Y0 i 0 (a circular Gaussian dis-
tribution of impact-points offset from the Gaussian-valued target),
Read (1971) derives El(f) for the generalized cookie-cutter damage

function d(r) = 1 (0 -_ r • R), d(r) = c exp (-r2.!2b0), (r > R). Theexlression is a very complicated function of R, b, C, " 2 , , and

)+ y), and tile reader is referred to his paper for details.

2.4.3 Gaussian Target, More Than One Impact I
What if more than one weapon is directed against the Gaussian

target? Grubbs (1968) introduces the most general model; he as-
sumes that each weapon impact-point is tile sum of two independent
random variables:

1. An offset aimiag-point (common to all n weapons) with a
Gaussian probability density function centered on the tar-

get, and with variables 2a d and 2 :2•xa "ya"
2. An aiming-error (independent from one weapon to the A

next) with a Gaussian probability density function centered

at the offset aiming-point (ax,ay) and with variances
2 2ao and ax y

The expected fractional value destroyed of the Gaussian target is
approximated by

n -(- )/
ISn(f) 1 1 (-)i+l (n) b2i ((b 2 _4 c2x)(b2 +G ) -( ')2 :

i= l1.

* ((b2 + c, ) " i (rj 2 + xa2 )) ( L(b2 2 ) i + 2" Cr a 2 ) 1/2

1 - exp (-A~ '2)) (1- exp (-A~ /2))I
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whe re

A =2k2  + Y 2 i 2 " 2 2 a (b2 o+ 2+ ia 2 )
x x 7 a-Tx x

and
22 2 2 2 2 2 2

A k2(b 2 + or + T + JYa))/JT(b2+ Y + iu2

This will be abbreviated

n

The latter expression brings out the point that this approximation
to E n(f) behaves like the binomial series, which is notoriously ill-

suited to computation. The partial sums of this series may oscil-
late in sign, initially with increasing magnitude, until at some valuf
of the summation index the magnitude begins to decrease. To get
around these difficulties, Breaux and Mohler (1971) have developed
three transformed series based on Jacobi polynomials that are
well-adapted to computation and require perhaps fewer than one-
half of the number of terms required by the binomial series. Un-
fortunately, the Jacobi polynomial coefficients are much more com-
plicated than the binomial ones. Grubbs, Breaux and Coon (1971)
suggest for the purposes of standardization that the simplest of the
Jacobi polynomials be used:

n
E n(f) ~ ajnE Aj iHi

j=1 i=l

whe re

Aji -1 for i 0

i

S= E (j+k o+a+)(-jik-1)1(oa-k)k for i = 1,2,
k=lI

a = n) (2j o+i,-1) r(j+o,,34J) F(j+o-+l) r(n±1 ,4)
jn k(l+±a) F(n+j+a+ii+2) F(j-410i1)

As a consequence of numerical experimentation, a was chosen to be
.99 and 3 to be 0. For computatiornal purposes, Grubbs, Breaux and
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Coon (1971) use a slightly modified formula in which a. is ex-
pressed in terms of a(jl)n.

Guenther (1966) derives the same equation for En(f) assuming

that axa = aya and ax = ay. If in addition there is no offset aiming

point distribution (cxa =Oya =0), then the equation simplifies to

i~ 1

22 2 /(122\

where p=b 2 /(b2 +a) and X 2/(b2b+a2). Breaux (1968) shows

how this can be reduced to

En(f) 1 - Bp(1/N\,n+l)/Xpl,/,

where Bx(p,q) is the Incomplete Beta Function, which may be cal-

culated from Ix(p,q) = Bx(p,q)/B(p,q), tabulated by Pearson (1934).

The above transformation also follows easily from formula 26.5.6
in Abramowitz and Stegun (1964).

2.4.4 Uniform Circular Target

Consider now the uniform-valued circular target of radius K
centered at (0,0) instead of the Gaussian-valued target. Morgen-
thaler (1961) and Guenther and Terragno (1964) both derive the ex-
pected fraction of the target destroyed by a single weapon, assum-
ing that the impact point has a Gaussian distribution centered on

( and with variances ×2 and a2 . The result is

E 1 (f) =2(b 2 /K2 ) P

where P is the corresponding probability of destruction of a point
target by a single weapon with cookie-cutter damage function, as

analyzed in Sections 2.1.1-2.1.4. However, one must replace 2., a
2 2 2 2 2  2 2 2 2 y

or a with +b , cy +b or + b and R with K in the earlier

formulas. For example, if ax = a- 2= 2 then

p =P(/( 2+b2)1/2, (x2 +y 2) o2/(02+b2)1/2): if x0  y 0,
Ki2 b2)1/21/2,, 22 i/,).")

P = PýK/ (am + be (oain + b2) + b2) ifboth cax l max
Sboth conditions hold, P I- exp (-K 2/2 c2 +b2,)).
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If more than one weapon is directed against the uniform-valued
target, Grubbs (1968) assumes the same model of weapon impact-
points as before. Unfortunately, the resultant expected damage
function cannot be integrated. In order to obtain a simple expres-
sion, Grubbs resorts to two approximations:

1. Instead of integrating over an elliptical region, he inte-
grates over a rectangular region of equivalent area, and

2. He replaces the integral (from -x to x) of the Gaussian
probability density function with the expression

(1- exp (-2x 2/-r))1/ 2 .

The expected fraction of the target destroyed is, approximately,

n

E(f)l- (-')'' (n) (2 /iK 2 ) lb 2 i (b u b2+

1- exp(iK
2 /2(b+ 2 2

+ ) '4a

1- exp iK2/2(b2 + + (•xa

This will be abbreviated

n :

As mentioned in Section 2.4.3, the latter expression behaves like A
the binomial series and is ill-suited to computation. Breaux and
Mohler (1971) have developed three transformed series based on
Jacobi polynomials; the simplest one (suggested by Grubbs Breaux
and Coon (1971) in the interest of standardization) is given below:

n j
En(f) ~E ajnZ AG 1

j=1 i=1

where A.. and a. have already been defined in Section 2.4.3. For

computational purposes, Grubbs, Breaux and Coon use a slightly
modified formula in which an is expressed in terms of a

The reader is referred to their article for comments on the com-
parative accuracy of the binomial and Jacobi approximations.
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Guenther (1966) gives the integral for E n(f) assuming that

Uxa =ya and cr = cry but cannot integrate it. If in addition there is
no offset aiming-point distribution (axa =ya = 0),P then the integral
can be easily evaluated:

n

En(f) = ( 1 )i+1 ( n)i 1 exp(-i7')) /i-

where p = b2 /(b 2 + + 2 ) and K 2 /2(b 2 -T2 ). Notice that Grubbs' bi-
nomial series approximation for En(f} reduces to this exact expres-

sion when axa = Gya = 0. In addition note the (not surprising) simi-

larity between the above two formulas to those of the previous
section.

When n is moderately large size (say 20 to 50, depending on
the word length of the computer) this formula becomes subject to
serious round-off problems. To meet this difficulty Breaux (1968)
transforms the above into a numerically stable form. The result-
ing expression has the added advantage that E 1(f),E 2 (f),... ,En(f)

are all available as partial sums of the same series:

n
En(f) =p ((1-pexp(-7)i- (1-)i)/i..

1=1 A

Morgenthaler (1961) considers a more general problem in
which each weapon has an individual aiming-point; the resulting ex-
pressions are so cumbersome that he must resort to simulation.
He also replaces a salvo of n weapons with an annulus of appropri-
ate area having its center distributed according to a circular Gaus-
sian distribution centered on the target. Unless the salvo can be
arranged so that none of the weapons "overlap" (i.e., unless the
impact-points are at least 3b or 4b apart), this approximation is -_
likely to be rather poor. A

2.5 MATCHING THE ATTACK DISPERSION TO AN AREA TARGET

In Sections 2.2.1-2.4.4, it has been assumed that the attacker
aims all of his weapons at the center of the area target. If the
radius of the target is large with respect to the standard deviation
of the impact-point probability density function, and it is also large
with respect to the radius of the damage function then the center
of the target will be overkilled by the salvo and the edge of the tar-
get left untouched. This problem can be overcome by "spreading
out" the salvo in some sense - either by scattering the
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aiming-points throughout the target area, or by retaining the single
aiming-point and increasing the standard deviation of the impact-
point probability density function. (The latter technique is seen in
the design of a shotgun choke.) A somewhat less practical solution
to the problem is the precise tailoring of an impact point probability
density function to maximize the expected fraction (or expected
value) of target destroyed. However, the latter problem is worth
investigating in its own right because it provides an upper bound to
the damage achieved by optimizing either the placement of aiming-
points or the standard deviation of the impact-point distribution.
These three approaches to the problem of matching attack dispers-
ion to target size, then, are the subject of the next sections.

2.5.1 Multiple Aiming-Points

It is not hard to see that the problem of selecting the optimum
set of aiming-points against an area target is an exceedingly diffi-
cult one. The work of Fejes Toth (1953), Neville (1915), Marsaglia
(1965) and Gilliland (1966) well illustrates the difficulties when
there is no error in the placement of the weapons on an area tar-
get. To W-6mbine this work with that of (say) Grubbs, Breaux and
Coon (1971) to obtain a reasonably realistic multiple aiming-point
model appears to be impossible at the present time.

What, in fact, has been accomplished? Bressel (1971) has de-
veloped perhaps the most comprehensive model. Specifically, he
considers an attack of n weapons against a rectangular (instead of
circular) uniform-valued target. Each weapon has its own aiming-
point specified in a rectangular grid. Each weapon has an error
which is the sum of two independent components:

1. an aiming-point error (common to all n weapons), with a
Gaussian probability density function centered on its in-

dividual aiming-point, and with variances axa2 and y2

2. an individual dispersion (independent from weapon to
weapon) with a Gaussian probability density function with2 2
variances u x and uy.

He assumes a diffused Gaussian damage function. The resultant
equation giving the expected function of target damage is far too
cumbersome to optimize with respect to the two components of
aiming-point spacing. In order to illustrate the optimization pro-

cedure, he considers a special one-dimensional case: the determi-
nation of the correct spacing between the aiming-points of two
weapons dropped by an airplane perpendicularly crossing a railroadtrack. Setting Cxa = •ya = 100 feet, ux = Uy = 25 feet, a target of

2 feet by 200 feet (effectively infinite), and the damage function
parameter b = 25 feet, Bressel determines that the optimum weapon
spacing is about 74 feet (each weapon should be aimed 37 feet from
the target center). He plots the expected damage as a function of
weapon spacing in order to demonstrate that a true maximum is

iA
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achieved; for sufficiently small values of axa = ya (20 feet or less
in this example), the optimum spacing is actually zero (both weapons
should be aimed at the center of the target).

Using the same model as Bressel, Sangal (1969) and Jaiswal
and Sangal (1972) have derived expressions for the expected fraction
destroyed of a rectangular target attacked by (a) three weapons in a
string, compared with an equilateral triangle aiming-point pattern,
(2) four weapons in a string, compared with a square aiming-point
pattern, and (3) five weapons in a string, compared with a quincunx
aiming-point pattern (i.e., the arrangement of the pips on a die).
Unfortunately the expressions are so lengthy that it is tedious to
determine either the optimum spacing of a given pattern (a function
of target dimensions, aiming-point and dispersion variances, and
damage function spread), or the conditions under which one or
another of the optimized aiming-point patterns should be used.

The Bessel model can be specialized by retaining the diffused
Gaussian damage function but simplifying the weapon aiming-errors, I, ~. stig2 2 2 2 2
i.e., setting a = 0 and cr = a = a . Hunter (1967) uses this

model to calculate En(f) for a Gaussian target, and Read (1971) uses

Sthe same model to calculate E (f) for a uniform-valued circular tar-
n 7get. Unfortunately, the resultant expressions are so comulicated

that it is impossible to find the optimum set of aiming-points.

2.5.2 The Maximum Expected Damage if the Attacker Selects the

Variance of the Weapon Impact-Points
In this section, a cookie-cutter (i.e., all-or-nothing) damage

function with radius R is assumed. Two types of area targets will
be considered, a uniform-valued circular target and a Gaussian-
valued one. As will be seen, no analytic procedures are known, and
it is necessary to treat the problem empirically. For simplicity, a
circular Gaussian distribution of weapon impact points will be con-
Sid,&L't'd. Tlmc attackor's prnblem is to determine the ro= A=u,
which maximizes E (f). opt x3

Consider a uniform-valued circular target with radius K. The
evaluation of E n(f) for a given value of a has been discussed in

Section 2.2.2; aCrp may be found empirically from tables of En( M.
The process is simplified by the fact that for fixed n and for h any
constant, ha0op = f(hK,hR), so that a0ot/K is a function of R/XK and n
alone. One can use the extensive tables of Jarnagin (1965) to deter-
mine the optimum standard deviation. This brief table has been
compiled from that source:
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n=5 n= 10 n-20

R/K opt./K En(f) oopt/K En(f) 9opt./K E n(f)

0.05 - - 0.29 0.024 0.33 0.047
0.1 0.31 0.047 0.36 0.090 0.39 0.165
0.2 0.38 0.168 0.42 0.293 0.45 0.471
0.3 0.40 0.327 0.45 0.514 0.50 0.728
0.4 0.42 0.492 0.48 0.702 0.53 0.882
0.5 0.43 0.642 0.50 0.835 0.55 0.958
0.6 0.42 0.766 0.50 0.919 0.56 0.987
0.7 0.39 0.861 0.48 0.965 - --
0.8 0.35 0.928 - -.

It would be of some interest to determine the asymptotic behavior
of Oopt and its associated En(f) as n approaches infinity and R ap-
proaches zero such that nR2 is a constant.

2
Consider next a Gaussian-valued target with variance uT. The

calculation of E (f), given a, was discussed in Section 2.3.2. Analo-n
gously to the uniform-valued case, aopt'•T is a function of R/JT
and n alone.

Using the table in Section 2.3.2 for a salvo size of 20, one can
conjecture that as n approaches infinity and R approaches zero so

2 I2
that nR = c, the 0 opt is given by) 1.5 (R It seemsopt is/ C T / T

plausible to assume that r2 is roughly proportional to i'n; there-
fore, one obtains

(uopt/uT) 2  0.34 ,n (R/'UT)

Note that this is of the same form as Dopt in Duncan (1964), con-

sidered in Section 2.3.3. What is the corresponding value of E n(f) ?
Normalizing to 0 T = 1, one can show that the limiting maximum
E (f) is

n

lim En(f) 1- r exp r2!(1- P(Rd',r/c))ndr
n- 

n

R2 =c/n 
0

c /2u 2

1 - U2(2a2/c f ro 1 exp(-r) dr

S1- (2a 4 /c) '(o2 ,c/2 22
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where is the incomplete gamma function. If one substitutes in

Copt2 0 34 F (T for 2 and uses Pearson (1951) to evaluate the

integral, one obtains the approximate table:

c /2 Uopt/cT lim En(f)

2.5 0.733 0.455
5.0 0.872 0.635
7.5 0.965 0.738

10.0 1.037 0.804
12.5 1.096 0.849
15.0 1.148 0.882
17.5 1.193 0.906
20.0 1.233 0.924
22.5 1.270 0.937

2.5.3 An Upper Bound to the Expected Damage if the Attacker

Selects Any Probability Density Function of Weapon

Impact- Points

It would be quite interesting to find a method of determining
the optimum p(x,y) among all possiule impact-point probability
density functions, instead of restricting oneself to Gaussian ones.
This appears to be an intractable problem: however, Walsh (1956)
treats a related problem that could often lead to satisfactory ap-
proximations. His method is applicable to targets of arbitrary
value-structure, not only Gaussian or uniform ones. Furthermore,
Walsh solves this problem for many dimensions; this section re-
stricts Walsh's argument to the two-dimensional case. It is con-
venient to formulate Walsh's problem in terms of the original
problem.

Letting, as usual, d (x-xt,y-yt) be the probability that a point

(xt,yt") of the target is destroyed by a weapon impact at (x,y), define

P(xt'yt) J f d(x-xtpy-yt) p(xy) dx dy

Thus, P(xt,yt ) Is the probability that the point (xt,yt ) is destroyed

by a weapon launched at the target. Let T(xt,yt ) be the density

function of the fractional value of the target; that is, T(xt,y1 ) inte-
grated over a region gives the fraction of the total value contained
in that region. It is convenient, although not necessary, to insist
that T be a bounded function, so that the integral of T is continuous.
Then the expected fraction of the target destroyed by n independent
weapons is
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00 00

En(f) - (xt'Yt) - P (xt'Y t 1,dt dYt"

_00 -00 C

The first problem mentioned in this section can now be precisely
formulated: maximize En(f) over possible densities p(x,y), given
the above expression for t . Unfortunately, there seems to

be no way to solve this highly nonlinear variational problem.

Walsh, however, is able to find, for a class of possible

P(xt,yt), that P(xtyt) which maximizes En(f. It is easy to derive

a constraint for P (xtyt) by integrating the formula defining

P (xt,yt):

00 0

L
P (xt,yt dxt dyt 7

;0 -- 00

f J J f d(x-xt,y-yt) p(xy) dx dy dxt dyt

.00 .0 .0 c

~ff p(x,y) f f d(x-xt,y-yt) dxt dy dx dy
\& I K.I

_00 t)0

f =D

where D is the total lethality of a weapon:

00 00

D J f d(x,y) dx dy

One assumes that D > 0, since otherwise the attacker can accom-
plish nothing. For brevity, the subscripts t are henceforth dropped

in the expression P(xtYt .
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Walsh finds that P(x,y) which maximizes En(f), subject to the

above constraint on P(x,y). If a p(x,y) exists which generates the
optimal P(x,y) found by Walsh, then clearly p(x,y) is optimal in the
sense of maximizing En(fl. However, it is possible (in fact, likely)

that in a specific problem no such p(x y) exists. In such a situation,
one must settle for a p(x,y) which leads to an approximation of the
optimal P(x,y).

The problem to be solved can be restated slightly as follows:
Find that P(x,y) which minimizes

J J T(x,y) {i - P(x,y)}n dx dy

subject to the constraints

f JP(x,y) dx dy=• 0 •(x, y) 1 .

Because Walsh gives an incomplete derivation of the solution (citing
Svesnikov (1948), a source not readily available), it is worthwhile
giving a full derivation, using a simple Lagrange multiplier
argument.

First, consider the following problem: Let X > 0 and minimize

f ' o{T(x'Y) (i P(xy))n + nXP(xY)} dx dy

subject only to 0 - P(x,y) 1 1. Suppose that for some X the Px(X,V)

solving this problem satisfies the additional constraint. Then
clearly this P (x,y) solves the original problem, since the term

nxP(x,y) has no effect on the minimization. This is the Lagrange
multiplier principle.

To minimize the above integral, observe that there are no
constraints connecting values of P(x,y) at different points. There-
fore it is sufficient to minimize the integrand independently at each
point. Thus one is led to the problem of minimizing

T(1-P) 4 nýP

where T is a constant and 0 s5 P •- 1. Elementary calculus yields

the solution P = max {0, 1 - 0X/T1/(n} Hence, the solution is
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given by PA x y) IIIax (xTx,~ 1 i~) Observe that
for each (x,y), P (x,v) is a continuous monotone nonincreasin- tulc-
tion of X. x

To complete the Lagrange multiplier solution, it is necessary
to determine X. so that

f f P,jxN) dx dy

~fJ ~1 -( 'T(x,y)') 1 (-Hdx dy D

T (x, y) "-X

This integral is a continuous monotone nonincreasing function
of X. Its value is zero at sup r(x,y). As X approaches zero the
value of the integral approaches A, the total extent of the target.
That is, A is the area (possibly infinite of the region for which
T(x.y) > 0. Thus the above equation has a unique solution in X pro-
vided that D < A. But if D • A the original problem is trivial,
since a P(x,y) can be chosen satisfying the constraints and for which
P(x,y) = 1 whenever T(xy) ` 0: thus the entire target can be de-
stroyed by a single weapon. (This fact is additional evidence for the
lack of realism of the model used.) In the case of interest, there-
fore, the equation has a solution. In practice, however, solving for
X is not too simple. In general, analytic solutions will not exist, so
that it will usually be necessary to employ a search procedure.
However, this may not be too difficult if a computer is available,
since it should not be necessary to determine x very accurately, and
since the continuity and monotonicity of the integral would simplify
the search.

In any case, the solution may be summarized as follows.
First, determine x from the equation

ff T11 - (N/Txv) dcx dv D

Then the optimum P(x,y) is gdven by

p(x,y - (�1 'T(x,y.) 1.(n- 1 fif T(x,y).

0 if T (x, y)
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The corresponding E n(f) is given by

En(f) =1 T f ' (x, y) 1 - P(x,y))' dx dv00) - _O

= ff J T(xv dx dy - Jf T(x,y)

T,'x,y) <. T(x,y) )

T(x,y)) n-1) dx dy

1- Jf T(x,v) dx dy- ff (,\N/T(x,y))/(n-1) dx dy

= f T(x,y).-• (~ T(x,y) i.(ni) -i yi= ff

T(x,y)>X Tx

It is instructive to carry out these calculations in the simple ]
case of a uniform-valued region N. Let the area of N be A; then

T(XY) X ' (x,y) EN
A

T(x,y) =0 , (X,y Y) N

1-
Thus thQ eq'.:aP.ion for X becomes (if 0 < x 1- 1/A):

so
n-i

- (1-D!'A)
A

Hence

1 1 .Aln- 1) -

1- (• A -D!A if (x,y, c ,

P (X, y) =Ay

0i f (x,y) N
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The resulting E n(f) is given by

En~f -- A _ (1- i'A n(n-1).1_

SAl A1

[- -I- (1-D/A)n

Therefore, the optimum P(x,vN is a uniform density over the
whole target. However, it is not possible in general to find any
p(x,y) which leads to this distribution. To be specific, assume that
X is a circular region and that the damage function is a circular
cookie-cutter. Then it is easy to see intuitively that for any p(x,y),
either the resultin- damage function overlaps the boundary or it
approaches zero near the boundary. More formally, one sees from
the definition of P(x,y) at the beginning of this section that P(x,v) is
a continuous function, provided p(x,y) is a bounded function. Even
if p(x,y) is not bounded, a solution is impossible. In fact, it can be
seen that in general, whatever the nature of the target value and
damage functions, a solution is unlikely.

Nevertheless, the given E (f) provides an upper . nd. Thus

if one can find a p(x,v) which gives an En(f), close to that bound, one

knows that p(x,y) is a good approximation to the optimum result.

2.5.4 An Asymptotic Probability Density Function of Weapon

Impact-Points for a Gaussian-Valued Target

When one attempts to apply Walsh's method to a Gaussian-

valued T (xý,Y) instead of a uniform one, one runs into mathemati-

cal difficulties immediately. To find X, one must solve the equation

bf - 1)'\

2- r (1- •k -1) ((1.'2r.T) exp(-r 2 .'207T)) I- )h'=r

where a and b are the values of r which satisfy

-(r. @ T)exp r2 /2(T) . Thus any solution of the problem would

certainly make extensive use of a computer.

However, if one allows n to approach infinity and R to approach

zero in such a way that nR2 remains equal to a constant c, then it
is possible to determine even the impact-point probability density
function which maximizes E (f) in the timit. One derivation can be

found in the second half of a paper by Galiano and Everett (19670 a
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different one is given in Duncan (1964). In the limit, the expected
fraction of total value destroyed is

lim E (f) = 1 - (1 (C/a 2 ) 1 exp -c/o4 12' 2

R2 --c/n

This is often referred to in the literature as the square-root law of
target damage. The impact-point probability density function is
circularly symmetric about the center of the target. At a distance

r from the target center0 , the density is

proportional to the quantity .(C/4T) 1 (r 2 .,2ou24); for all

r (2u T) 1 2 c 1/4, the density is zero. Obviously, this truncated

probability density function is not Gaussian: the table below shows
how much the offense gains (in the limit as n approaches infinity)
by switching from the optimum Gaussian probability density to the
unconstrained optimum probability density.

EXPECTED FRACTION OF TARGET DESTROYED

linr E (f)

cU 2 Gaussian Optimum

2.5 0.455 0.469
5.0 0.635 0.652
7.5 0.738 0.758

10.0 0.804 0.824
12.5 0.849 0.868
15.0 0.882 0.899
17.5 0.906 0.921
20.0 0.924 0.938
22.5 0.937 0.950

2.6 ESTIMATING THE PROBABILITY OF TARGET SURVIVAL/

DESTRUCTION FROM IMPACT-POINT DATA
If the probability density function of weapon impact points,

p(x,y), is completely specified, one may apply directly the proba-
bility calculations outlined in earlier sections. However, a more
realistic situation is that the form of the probability density func-
tion is known but certain parameters are unknown. For instance,
one may know that p(x,y) is a Gaussian distribution function but may

know neither the mean ;I = ("x4y) nor the covariance matrix
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or UOx XY

However, one is assumed to have a set of observations of actual

weapon impacts (xy 1 ),Y(X2 ,Y2 ), ... I (Xn,yn). How can one use this

data to estimate the probability that a weapon will impact within a
circle of radius R, or (conversely) estimate the radius of a circle
within which a weapon will impact with probability P?

The reader is warned that the following sections draw rather
extensively on material from mathematical statistics; however, he
should be able to understand the results in tils section without a de-
tailed knowledge of the field.

2.6.1 Estimation of the Probabilhy of Impact Within a Circle

Consider the problem of estimating the probability P that a
single weapon will impact in a circle of radius R centered on a point
target, given a series of observations of actual weapon impacts

(xly 1),ix2 ,Y2 ),... (Xn,yn).

It is clear that a ielatively straightforward estimate of this
probability is immediately available. If m out of the n quantities

xi + y are less than or equal to R, then one can estimate the
probability P by

P = m/n,

The variance of this estimate is estimated using the binomial prob-
ability distribution:

var(P) = (m..n) (1 - (n/n)) (1./n)

However, it should be possible to make more complete use of the
available information and obtain an estimate with as small a vari-

ance as possible. To accomplish this, one can apply a well-known
theorem from statistics:

Assume that X is a random variable with a probability
density function f(x,e), and assume that one wishes to
estimate a function g(0). If a statistic t for 0 which is
complete and sufficient exists, and if an unbiased esti-
mate W of g(O) is known then the minimunm-variance
"unbiased estimate for g(O) is given by the expe2ctation
of W given t, E(W~t).

Laurent (1957, 1962) has determined the minimum-variance unbiased
estimate P under the assumption that neitner 1ý nor E is known. The



62 2.6.1

estimate given below is a somewhat simplified expression due to
Kabe (1965). Let x1 and X2 be the eigenvalues of the sample covari-
ance matrix S; that is, X1 and X2 are the solutions to the equation

where

n

2 n
i=l

n
s - (yi-) 2 n 1y

i=1

n

i =1 ='

-4-

n n
R ~x /n and E i

i=1 i1

Assume that X > X2. Then, assuming n is even,

(n-4)/2
P (2-,,)- (n-2) (X2 ./ 1 )'/ 2 X' (n-4/2) B(i+1/2,1/2) ]

"(i-(x2./)i B(i+l,(n/2) -i- )lR2 !n2)(i+l,(n/2)-i-I

where B(p,q) is the Beta Function F(p) r(q) !r(p+q), and where
I (p,q) is the Incomplete Beta Function tabulated in Pearson (1934):

X =

B (p,q) = dy /'B(p,q)

This function is also described on page 263 of Abramowitz and
Stegun (1964). The variance of this estimate is unknown;
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it is impossible to say how much gain has been achieved over the
simple estimate P im/n.

If one is willing to assume that cx" = 0, Kabe (1968) derives

minimum variance estimates for P under three conditions: >_ un-
known; pi known; ' known, g unknown; both ' and gi unknown. Un-
fortunately, these are given as bivariate integrals which are not
easy to evaluate. For example, if r is unknown and p is known;
then the minimum-variance estimate of P is

P = (B(1/2,(n-1)/2)) 2 ff ((S2xu (n-3) '2 '-

(S x Sdu dv

2 2 2where the integration is taken over the region u2+ v± :- R , and

n n

XiS, :Yi
i=l i=1 1

Kabe outlines how to evaluate this intcgral by means of a triple
summation.

If one is willing to assume that p(x,y) is a circular Gaussian
distribution with mean centered on the target, then the only unknown2 2 2 -A
parameter is (2 = (T = c. The problem of determining thex y
minimum-variance unbiased estimate of P, the probability that a
weapon will land within a distance R of the point target, is consid-
erably easier. Inselmann and Granville (1967) have carried out
this computation using the same theorem as Laurent. They find
that

=(2nS2)2n-3 2 (n-3 )
n-i -2 s2n-2

(4n-6)n nn- S-n

where

n
s2 =E (x• + y2)/2n

Again, it would be desirable to know the variance of P.

I.z
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2.6.2 Estimation of the Radius of a Circle Corresponding to a

Given Impact Probability
This section considers the converse of the previous problem.

As before, assume that p(x,y), the probability density function of
weapon impact-points, is Gaussian with arbitrary mean 4 and co-
variance matrix E. The problem is now to estimate the radius R of
a circle centered on a point target at the origin of coordinates,
given that the probability of target destruction is P, and given a

series of weapon impacts (X1 ,),(x 2 ,y2 ), ... I This can be

readily done by first estimating p and Z by means of the unbiased
sample moments

n

i=1

n A

i=l

n

i=l

n n

x--E xi/n and Y= yi/n P

i=l i=l

next rotating the coordinate axes through an angle q. to get rid of

Txy (6 is the solution to the equation tan 2 •= 2T ,/(T2x- T2)),

and finally identifying the remaining four transformed estimates
with the (unknown) mean and variance of the probability density
function of weapon impact-points. One can then calculate R im-
plicitly using the methods of Section 2.1.

Blischke and Halpin (1966) derive the variance of this esti-
mate of R:

( 2 2 2 2)- S1- 1) Cva()-(1/nC )oC~ 2cy C S, +US 4n

-X - 1 1)' (RS2 - 111- J

+ (RC2 Ix 4i S1 )2-
x S - -iYC )1
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2 cos nO exp(-f(R,O)/2q 2 ) dC n 0,1,2 ,

S= f sin n9 exp (-f(R,O),/2q 2) dO n 1,2

q2 2 2 2
•x y •xy'

and

f(R)Pe) = 02 (R COS 0-pix) 2 - 2 a, (R cos 0-Ax) (R sin e-6~

+ (R sine-y,)2

They also give a series approximation for the variance of R. I
If the probability density function of the weapon impact-points

is circular Gaussian and centered on the target, the estimation of
the radius R corresponding to a given destruction probability P is
much simplified. Usually, one sets P equal to 0.5; weapons ana-
lysts will recognize this as the problem of estimating the circular
probable error, abbreviated CEP. It is easy to show that the radius

R is in this case equal to (2 loge2)l/ 2 c = 1.17 7 4cr; therefore, the

problem of estimating R is equivalent to the problem of estimating

u from a sample (xy 1 ) , x2 ,Y2 ), ... , (xYn) from the circular
Gaussian distribution with zero mean.

Moranda (1959) derives the minimum-variance unbiased esti-
mate ol o: A:

_ (n) 2 2 A
Cr 7F( n+ 1/2) i Y :

This estimate is unbiased, and its variance is

,'ar(u) =Fr 2 (n+1/2) 1

Consequently the variance of R is (1.1774)2 var(;). As n approaches
infinity, the quantity in braces approaches 1/4n.

I
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Moranda (1959), Kamat (1962) and Inselmann and Granville
(1967) have proposed a variety of alternative estimates of u, in the
hope that simplicity of calculation will compensate for increase of
variance. Note that all of these estimates assume that the circular
Gaussian distribution of errors has a mean at (0,0).

n 1/2

1. Mean Radial Error. Calculate n x2 + Y) n = r. This

1/2
statistic has an expected value E(r) = (-, /2) - u; therefore, an un-

biased estimate of a is given by (2/7)1/2 r. The variance of (2,!-,)l!2r
is ((4/-,) - 1), 2 /n, which is 1.10 times as large as the variance of

the best estimate or.

n

2. Mean Deviation. Calculate E (Ixiil+ ;y~i) 12n = d. This statistic

has an expected value E(d) = (2,/,.) 1•; therefore, an unbiased esti-

mate of a is given by (-,,/2) 1/2d. The variance of (-,/2) 1/2d is

(T,-2)u2/4n, which is 1.14 times as large as the variance of the best
estimate ".

3. Radial Order Statistic. Arrange the quantities r. =x+ y

in order from smallest to largest: r( 1) s r( 2 )• ... r(n). Let

r denote the jth order statistic, and associate with j the quantity

p = j/(n+l). If j is chosen so that p is equal to 0.797, then the
statistic

. r(j) (2 log(1-p))) -12 = 0.558 r(j)

is an unbiased estimate of a and has a variance equal to 0.396 .2/ n,

which is 1.58 times as large as the variance of the best estimate (.T

In practice, since j and n must be integers, one can only approxi-

mate p by p'; the multiplicative factor becomes (2 (-loge(1-1Yp))-/2).

The following argument shows why p = 0.797 was chosen. It
is a well-known result from classical statistics that, for large n,
the jth order statistic in a sample of size n from a probability den-
sity function f(x) is approximately distributed as a Gaussian random
variable with
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E (r(,) =Xp 
;

var r(r)) p(1-p)!n (f(Xp))2n

where

x

f f(x) dx p

In this application, f(x) is equal to (x! 2) exp (-x 2 /2c 2 ); therefore,

/o = (2 (-loge(1-p))) "12 and fIx = P (1-P) (x .p/). The statistic

r(j) (2(-log,(1-p)))-1/2 is an unbiased estimate of g with variance

p(1-p)- (2 (-loge(1-p))) - 2 g /n. It is a straightforward matter to

ascertain that the value of p which minimizes this variance is the
solation to the equation -loge(1-p) 21), or p = 0.797. In other

words, among all unbiased estimates of a using a single order sta-
tistic, this has the smallest possible variance. Sometimes the
median (divided by 1.1774) is used as an estimate of c; however, its

variance is 0.521 a 2 /n.

Strictly speaking, the above estimates a, r, d and s should be
used only when one is certain that the probability distribution func-
tion of impact points is circular Gaussian with a mean at (0,0). If
these assumptions are not true, the estimate of a can be seriously
in error. To protect oneself against such a possibility, one can use
a more "robust" estimate protecting against errors in the assump-
tions, at the price of increased variability of the estimate if the as-
sumptions are, in fact, correct.

Suppose, for example, that the mean of the distribution of im-
pact points is not located at (0,0). One can perform statistical tests
on the sample values (xl'y) )'" P (XnYn) to determine whether or

,iot this hypothesis is reasonable. Alternatively, one can construct
estimates insensitive to this failure by replacing xi and yi with
x.- x and Y - y' respectively, where

n ni

X rE xi,/n and y y !n 1
i-l i=l
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Moranda (1959) suggests the following analogue to a:

1/2

r(n-1 -' 2)

This estimate is unbiased, and its variance is

var') = (n- 1 2(n-1) ?2 A
2(-1 1 7 2 j7

As n approaches infinity, the bracketed quantity approaches 1./4(n-t).
When n = 5, 10 and 20, the quantity var(u') /var(o) - 1.26, 1.11 and
1.06 respectively. The price paid for robustness is quite small.

Kamat (1962), Grubbs (1964b) and Cacoullos and DeCicco (1967)
have proposed a variety of alternative estimates of a, in the hope
that simplicity of calculation will compensate for increase of
variance. A

1. Mean Radial Error. Calculate xi_>1 2 (yi)) n = r'.

il1 1/2
This statistic has an expected value E(r') = ((n-1)- /21) u: there-

1/2fore, an unbiased estimate of a is given by (2n/(n-1)ir) r'. The
variance of this estimate is given in Grubbs (1964b). When n = 5,
10 and 20, the quantity var(r'/E(r'))/var(r/E(r)) 1.23, 1.11 and
1.06 respectively. Again, the price is small.

n
2. Mean Deviation. Calculate (Ixi-xIi÷ yi-y!)!21 =d'. This

i=l 1/2statistic has an expected value E(d') = (2(n-1)/rn) 1a; therefore,
an unbiased estimate of a is given by (-n/2(n-1)) 1/2d'. The vari-
ance of this estimate is given in Kamat (1962). When n = 5, 10 and
20, the quantity var(d'/E(d'))/var(d/E(d)) = 1.22, 1.09 and 1.05 re-
spectively. Again, the price is small.

3. Radial Order Statistic. The analogue to s has not been derived.
A variety of estimates of u based on the extreme order statistics in
the sample have been proposed. Although such estimates have the
virtue of not depending upon the location of the mean of the impact-
point distribution, their variance increases rapidly with n; conse-
quently they should be considered only for quite small sizes (say,
20 or less). In one dimension, the range w = X(n) - x( 1 ) is a natural
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statistic to use for estimating g. The expected value of w is dna,

and the factor d is tabulated for 2 • n • 20 in Table 20 of Pearson

and Hartley (1954). When one goes to two dimensions, various gen-
eralizations of the range have been proposed by Kamat (1962),
Grubbs (1964b)), Daniels (1952) and Bradley (1965):

Wl = i(x - X( + Y 1n) - Y(1)) (average range)

w= 2 ( 2 1/2 (diagonal range)w2 = (X(n)-X(1)) +ý (y(n)-y(1))2• (ignlrne

m = (ym-yj) 1 '2 (extreme spread)

"V radius of smallest circle covering (xly 1 )" " (Y]4 111 ly )L

w= perimeter of smallest convex polygon containing
57

The variability of the first four estimates (after corrections for

bias so that E(biwi) = clis quite similar; for example, if n= 10,

var (bW 1 )= 0.0334 a2 , var(b 2 w2 ) =0.0331 2 , var(bw) 0.03-76 g
and var(b 4 w4 ) = 0.0365 a 2 . The statistical behavior of wv5 is not

known. The statistic w, is the simplest to calculate. Its bias cor-

rection is b1= 1idn. var(Wl/d) -- u *n2d, where dn and Vn are

tabulated in Table 20 of Pearson and Hartley (1954). For n = 5, 10

and 20, the quantity var (wI/dn)./var(&') = 1.07, 1.10 and 1.43
respectively.

Kamat (1962) considers yet another assumption failure. If
one is worried about a slow "slippage" of the mean of the impact-

point distribution as the observations (x.,y.) are being collected,
he suggests the statistic

n-i

i=l
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The expected value of d" is 2,/%, and the variance is approximated
by

va( d'/2) 0 L ..4 326) 92

If one uses this estimate, one pays a somewhat larger price in in-
creased variability when the impact-point probabilit, density func-
tion is centered on the target: as n goes to infinity, the ratio of
this variance to that of the minimum-variance estimate is 1.68.
However, no other estimate presented above protects against a slow
slippage of the mean.

2.6.3 Estimation of the Parameters of a Diffused Gaussian Damage

Function

So far, all estimation problems have been carried out in the
context of a cookie-cutter damage function - the target is assumed
to be destroyed if and only if the weapon lands within R of it. In
such a situation, the probability that a weapon will land inside a
circle of radius R is of primary imporLance.

Suppose, however, that one has a diffused Gaussian damage

function exp (-r .b)instead. Assume that a point target is lo-

cated at (0,0) and that the impact points of weapons directed at the
target have a circular Gaussian probability density function centered

on the target and with variance 2. Under these circumstances, the
probability of target destruction by a single weapon is given by

P =b 2 I(a 2+b 2).
Assume that one has fired n weapons against the target, m of

which destroyed the target. For those m weapons, the miss-
distances rl,r 2 ,.1..", rm are known; for the others, the miss-

distances are unknown. (This situation might occur if each weapon
was set off by a proximity fuse, which operated at distance r with

probability exp (-r 2 /2b 2 ) .)

Obviously, one can estimate P by P = m/n. However, if one

is interested in estimating a 2 and b2 the components of P, more
sophisticated estimates are required. Thompson (1958) derives the
maximum-likelihood estimates a and h2. To do this, he forms the

likelihood function (the probability of getting m target destructions
out of n weapons with miss-distances r 1,r 2 , . r..

2,, t / 2\ )m-n/ b2  1 n m

(b exp 4-Q b

m 2 2 2
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where
1 2

Q ri

Differentiating L(b2, 2) with respect to b2 and 2 and setting these

expressions equal to zero, one obtains two equations to solve for , 2

and b2 . These are known as the maximum-likelihood estimates of
2 22:ar andb

Si -21 -- nQ2 -2 n-m1

It is comforting to note that b 2 ,"(ju 2 b2  m/n, the estimate pro-
posed earlier for P.

2.7 OFFENSIVE SHOOT-ADJUST-SHOOT STRATEGIES

The preceding sections of this chapter have all considered
situations in which a salvo of weapons has been ,irnultaneouslv di--
rected against an undefended point target. Suppose, however, that
the offense can observe the impact-points of his first (i-l') weapons
before directing his ith weapon at the target. He may discover, for
example, that his weapons are clustering about an offset aiming-
point rather than the target. Obviously, he can compensate for this
offset by directing future weapons not at the target but at an imag-i-
narv offset aiming-point on the opposite side of the target. The pro-
cedure outlined in this section calculates the optimun compensation
to be applied to each weapon, based on a knowledge of the earlier
impact-points and their associated compensations.

Consider the following one-dimensional bombing pi oblem. A
point target is located at the origni; it is destroyed if and orly if a
weapon impacts between -R and 4.R. Assume that the weapon Impact-
point zi is the sum of two components: a fLxed bias B of unknown
magnitude, and a random aiming-error x, having a Gaussian proba-

bility density function with a variance of ,T . A non-lethal weapon is
directed at the target for calibration purposes: its impact-point is
z0 = B ý x0 . If one aims the first lethal weapon at -zo, then the new

bias is equal to B - z0 = -x 0, and the impact-point, z, = x1 - NOY

will have a Gaussian probability density function with mean centered

on the target and variance 2u2. Note that the calibration shot has
eliminated the unknown bias B: the probability density function of
the impact-point of the first lethal weapon is completely known.

I I I I I I I I I I I I I I I I I II I
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What bias should be given to the second lethal weapon? The
probability of kill of the second weapon will be maximized if the
variance of z2 is minimized. It is not difficult to show that this is
accomplished if the bias is chan-,-d by -(1,/2)zl; the new bias is
equal to -(1/2) .x 0 +x and the impact-point, z2  x2 - (1,/2) (x-xN,
will have a Gaussian probability density function with variance2]
(3/2)or2. If one applies the same argument to the third weapon, thebias is changed by -(1 13)z2 , and the impact-point,

z3 :x 3 - (1/3)(x 0 4x 1 +x2 ) has a variance of (4/3)c2 . The general
bias-correction procedure is now evident; as n approaches infinity,
the impact-point will have a Gaussian probability density function2
with variance u2 centered on the target. Nadler and Eilbott (1971)
show that this bias-correction procedure is optimum (in the sense
of minimum variance at each stage) among all bias-correction pro-
cedures which are linear functions of the impact-point observations
zi•

For an attack of n weapons, Nadler and Eilbott derived the
probability that the target will be destroyed if the above bias-
correction procedure is independently applied at each stage to the
x-component and the y-component of the two-dimensional impact-
point error:

n

P= 1 - xp( (R 2//2,72) 1: i/i.1 Ai
In the two-dimensional situation, the aiming-error of each weapon
is assumed to have a circular Gaussian probability density function
with variance a2 ; the target is destroyed if any of the n weapons
impact within a distance R. Nadler and Eilbott prove that the two-
dimensional bias-correction procedure is optimum, not only in the
sense of minimizing the variance of the x-component and the y-
component of the impact-point error at each stage, but also in the
sense of maximizing the probability of target kill with ni weapons
assmning a cookie-cutter damage function of radius R.

The summation in the exponent is equal to n-- - -(n2),

where -y is Euler's constant and ý/(n) is the digamma function (which
is tabulated). The summation can be appr-oximated by the expres-
sion n - loge(21+3)/3.

However, this bias-correction procedure should not be applied
in all circumstances. For example, if B is known to be zero (or
small with respect to the standard deviation y), then the attacker
will obviously do better if he leaves the bias alone. In fact, the
probability P that the target will be destroyed by an attack of n
weapons increases to
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1 - - exp -nR2/2t02

if no bias exists and no bias-correction is used. Htow should one
decide when to use the procedure? In order to eliminate the van-
able n, it is convenient to introduce a new criterion( oA effective-
ness: the expected number of attacking, weapons required to destroy
the tart ' If the bias E, is less than the critical bias B* Oven in
the tal elow, then the expected number of attacking weapons
needed -o destroy the target if no bias-correction is used is less
tLri,, the e.\pected number of attacking weapons needed to destroy
the target if the optimum bias-correction is used if the bias B is
greater than the critical bias B*, then the opposite situation is true.
For the details of the numerical calculations leading to this table,
see Nadler and Eilbott (1971).

TABLE OF CRITICAL INITIAL BIAS I-EVE•iQ.

R,/( 0 0.1 0.2 0.3 0.4 0.5 0.6

B*,'c 0 0.21 0.35 0.46 0.55 0.63 0.6,9

However, the attacker will not be able to speeifN the bias B with any
degree of precision. Therefore, it is necessary to introduce the
followinit,- approximate rule: use the bias-correction proceedure if
the probability that B -_ B* exceeds 1/2, and do iut use the bias-
correction procedure if this probability is less than 1/2. _4

It is important to distinguish the shoot-adjust-shoot strateg'
presented in this section from the more well-known shoot-look-
shoot strategy discussed in the literature. The obiective of a shoot-
look-st,'ategv is to conserve weapons by observing after each firing
whether or not the target has been destroyed. L, contrast, tihe
shoot-adjjus¶-shoot strate,:Ty attempts to max<imize the probab)litv
of target destruction, given that ni weapons have been made available
for this task. When one is "snint, a cookiic-cutter damage function,
it is aplpropriate to coii)iine a shoot-adjust-shoot and a shoot. look-
shoot strateuy. The information needed to carry out the b1ias-
eorrection (that is, the distance the last weapon impacted from the
target) is exactly tile information requi,-ed to determine whtIthCr or
not the target has been destryed (the distance is compared witfl the
lethal radius R). Nadler and Eilbott proved that the bias-correcticn
procedurc is optimum when shoot-adjuSt-9hoot and sh:vot-look-shool
are combined. Note that this problem is non-trivial: the probability
of target kill by the nth weapon must be conditioiled on the fact that
tile first (n-1) wecapolns all i nipact outside at c~rcle wilh radius Ft-
rentered on tile target.

For1 otei-r dainii _e fuilntions (1or examplp, th, till' used Gus1-
sianll dalllilae fnliction) it iS 1OC"(Q nattiura! i(, cons icier shoot-ai'.ust -
shoot and sho )t-look- shoot st iatc;,'ies selp i'1ately . The b)hse rvation
of a wcapon impact -pont does not mi niliediately tell tlhe ,lleose e
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whether or not the target has been destroyed; the condition of the
target must also be observed. It can be shown that the above bias-
correction procedure is optimum for any circularly sy'nmetric
damage function. The probability of target destruction using a dif-
fused Gaussian damage-function is

P = 1I (i+1)0 2 /(ib 2 + (i+1)0 2 )1

If one attacks area targets instead of point targets using a
shoot-adjust-shoot strategy, the bias-correction problem appears
to be considerably more difficult. If the first weapon impacts be-
low the target, for example, it may be desirable to overcompensate
for the apparent bias B in order to place the second weapon above
the target and minimize the chance of overlap. The bias-correction
scon becomes a complicated function of the geumetiy of all impact-
points (not simply the radial distance between the last impact-point
and the target, as for a point target).

2.8 ATTACK EVALUATION BY DEFENSE USING RADAR

IN FORMATION

In Sections; 2.1.1-2.5.4, various formulas have been pi esenLed
for calculating target damage under a ,'ariety of assumnptiotib about
the nature of the target and the damage function. In all these models,
it is assumed that the impact-point probability density function,
p(x,y), of the attacking weapon is bivariate Gaussian. Suppose, how-
ever, that the defense is able to estimate the impact-point of the
weapon by means of radar observations of the weapons in flight.
How does this additional information modify the expectation of tar-
get damage ? In short, can one determine the conditional threat
posed to a target by an incoming weapon? In many of the models of
active defense considered in future chapters, this sort of informa-
tion couJd be of considerable value.

This piroblem has been analyzed in ome detail. Specifically,
consider two kinds of damatce fumctions (c(. okie-cutter with radius
R, diffitsed Gaussi'.v,-,'ith stardard deviation b) and three kinds of
targets (point, u' " k-valued circular vith radius K, and Gaussian
v',h standard devii. : An ýrr). The taro7 L. is c entered on the origin of
a two..dimensional coordinate systom. Prior to the radar observa-
tion, the probability density function of the weapon i1iipact- p oiiit is
assumed to be a bivariate Gaussian with nman (XoY)Y andcovari-

ance matrix

I.i
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( 2T
2

Using the radar, the defense estimates that the weapon will impact
at the point (x ,y ) The true impact-point of the weapon is as-
sumed to have a bivariate Gaussian probability density function with

mean (xpY P) and covariance matrix

-25

Gxy 
/

Let (xp'YP) be denoted by the column vector Z. If U is large with

respect to l2, then the formulas presented in Sections 2.1.1-2.5.4
can be used to evaluate potential target damage. In the earlier
work, the covariance term could be eliminated by an appropriate
rotation of the coordinate system; however, this is no longer pos-
sible because the error ellipsoids of weapon impact-point and radar
prediction may not be parallel to each other.

If one assumes a diffused Gaussian damage function one can
write down in closed analytic form the pro.p ibility of kill ior a point
target or the expected fraction of value destroyed for a Gaussian
target. For the point target, the probability of kill is

P - b2 Ij3-.31-D''' exp (- C (1 mIDflC

where I is the two-by-two identity matrix, D is the two-by-two

matrix C is the column vector z( >+ )-Z, and is a

constant equal to b . E(f), the expected traction of value destroyed
fur a Gaussian target, can be expressed by the same equation, pro-
vided that pj is changed to 13' b2  T

If one assumes a cookie-cutter damage lunction, the probability
of kill for a point targ,.et or the expected fraction of value destroyed
for a Gaussian target is obtained by integrating a circular Gaussian
probability density function over an offset elliose. This can be ac-
complished using the tables diLsu!,sed in Section 2.1.4; however, the
specification of the ellipse is somewhat involved and is omitted here.

The evaluation of the expected fraction destroyed of a uniform-
valucd circular target is considerably more difficult. If a difflused
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Gaussian damage function is used, the integration of a circular
Gaussian probability density function over an offset ellipse is again
necessary.

2.9 SUMMARY

This chapter presents a wide variety of formulas to calculate
target damage by a salvo of identical weapons with a common aim-
point and independent aiming-errors. If the target is small with
respect to the cookie-cutter damage radius, the probability of sur-
vival for offset ellipsoid aiming-errors can be calculated: however,
little is known about the optimumn aim-point to use against clusters
of point targets. If the target is large with respect to the damage-
radius, the expected damage by a salvo o, weapons becomes much
more difficult to calculate; for simplicity, two idealized distribu-
tions of target value - the uniform-valued circular target and the
Gaussian-valued target - are introduced. However, it is possible
to obtain computable approximations for the expected damaE.,e by
an offset ellipsoid attack only when the cookie-cutter damage func-
tion is replaced by a diffused Gaussian damage function.

If the attacker can control the relative locations of the aim-
points of different weapons, he can optimize the expected targetdamnage. Such precise conitrol is rarely possible, however, and the •
attacker may only be able to control the standard deviation of
weapons about a single aim-point, or (better still) the probability
density function of weapons about a single aim-point. j

The evaluation of the above target damage formulas requires
a knowledge of quantities such as the probability that a random
weapon will land inside a circle of specified size: these quantities
can be estimated from observed weapon impact-points using a
variety of techniques from applied statistics. if the attacker can I
allocate weapons sequentially instead of in a salvo, he nv.y be b•le A
to correct biases in his aim by observing the impact-points-of his
weapons with respect to the tar'get. The final section ~ntuclpates
succeeding chapters by showing how the defense can c.,.culate
iml)aet-point probability density functions conditioned 1y cbscrva-
tions on the incoming weapon, thus sorting out the more thre ,nii.i
from the less threatening.

A

-A



CHAPTER THREE

DEFENSE OF A TARGET OF UNSPECIFIED STRUCTURE

This chapter is the first one in this monograph to consider
problems of active defense by a stockpile of defensive missiles.
The simplest such problems are those in which it is possible to
ignore the structure of the targets defended. For example, sup-
pose that one is interested in defending a point target with a stock-
pile of defensive missiles against a group of offensive weapons.
When one is dealing with a single target, the natural criterion of
effectiveness to use is the probability that the target survives. As
another example, suppose that the target has an area of uniform
value which is so large that it can absorb the entire offensive
stockpile without any overlap of damage regions. In this case, the
damage will be proportional to the number of weapons that pene-
trate, and a natural effectiveness criterion is the expected number
of penetrators.

The fact that the target structure is ignored in these criteria
usually (but not always) simplifies the analysis. Corsequently, the
models of this chapter are often used to approximate more com-
plicated situations or are used as components of more elaborate
models.

The following notation is used throughout this chapter: the
number of weapons in the defensive and offensive stockpiles are
designated by m and n, respectively. If the target is a point tar-
get, it is generally assumed that an unintercepted offensive weapon
destroys the target if and only if it lands within a distance R of
the target. All offensive weapons have impact-point errors drawn
from the same probability density function; furthermore, the
impact-point errors are independent from one weapon to the next.
It is also assumed that defensive missiles have a reliabiiity p -
that is, if a defensive missile is assigned to an offensive weapon,
the latter is destroyed with probability p. Furthermore, the in-
dividual missiles of a defensive salvo operate independently of
each other - if the salvo is of size i, the probability of offensive

weapon destruction is equal to 1 - (1-p)i. Finally, it s sometimes
assumed that an unintercepted offensive weapon has a fixed prob-
ability p of success against the target.

Ordinarily, ti.e reliability f is assumed to be known to the
defense. Suppose tha t the defense can observe where all n of thc
offensive weapons will land before committing any defensive mis-
siles, and suppose that the defense also knows the lethal radius R.
Then fhe optimum defense strategy is trivial - he observes that

I
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n' in of the offensive weapons will land within a distance R, and
salvos his m defensive missiles as evenly as possible against
each of the offensive weapons. Given that in' : m offensive weap-n
ons land within a distance R, the probability of target destruction

is

-1

where

k =[m'n'] and r= m -n'k

If r = 0, the formula simplifies to

If n' > m, P n is equal to unity.
Denote the probability that an offensive weapon lands within

B of the target by P. Then the unconditional probability of target
destruction prior to the attack is

n
P = " 1 (I)pi(/p)n-ip

i=0

The quantity P was calculated in Chapter 2 under a wide variety of
different assumptions about the impact-point distribution. For
example, if the probability density function of the impact-point
distribution is circular Gaussian centered on the target and with
standard deviation a = r , then

2 2P 1 - exp(.-2R 2 2 )

The rest of this chapter derives optimum defense strategies
for varicus modifications of this standard defense problem. On the
one hand, the defense may not be able to see the attack before
committing its missiles, or may not know the lethal radius R: on
the other hand, the defense may be able to use shoot-look-shoot -
that is, to determine whether or not a defensive missile has de-
stroyed an offensive weapon before directing a second mi.ssile
against the same weapon.
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3.1 DEFENSE STRATEGIES AGAINST WEAPONS OF UNKNOWN

LETHAL RADIUS

Suppose that the defense can see the entire attack before
launching a single defensive missile: that is, he can predict that
the offensive weapons will impact at distances r1 -< r2 - ... 7- rn

from the target. He is willing to assume that all n weapons have
the same lethal radius R, but he does not know what this is. In- A
tuitively, one would like to allocate more defensive missiles to
those weapons with small values of ri than to those with large ri.

It is difficult to allocate defensive missiles to minimize the
probability of target destruction when R is unknown. A procedure
which achieves minimum probability for one (hypothesized) value
of R will not work for another value of R. However, the following
criterion should work reasonably well over a range of R: allocate
the defensive missiles to maximize the expected distance to the
nearest penetrator (that weapon against which all defensive mis-
siles allocated fail). This is an example of a robust strategy as
discussed in Section 1.2. Let mi denote the number of defensive

missiles allocated to the ith closest weapon, and let Ai denote the
i .

probability that the ith closest weapon will penetrate: A.i (l-p)
Then the expected distance to the nearest penetrator is :

j-1
E =rlA1 + r 2 A2 (1-A,) + ... + r Aj ] (1-Ah) -+ r+ 1 fl (1-Ai)

i=l i=l

if the nearest j offensive weapons are assigned defensive missiles:

II = m' , .m>O for I - i j l 0
i1l-

The problem of maximizing E subject to the constraint

1 Ai =A - (1-p)"' can be solved by dynamic programming. How-
il

ever, it can be solved approximately by allowing the unknowns to
become continuous and treating A as an unknown. This approach
may be reasonable when p is small. To proceed, substitute

A(A IA 2 " A~ _1) for A. in the above equation and solve the sys-
tern of equations ',E; ",mi 0, i = 1,2,...,j- 1 to obtain the optimumn

S~i
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values of A1 ,A 2 ,...,Aj_ 1 . A can be chosen arbitrarily; select that

value of A that makes A. 1 (that is, let A = A1 A2 ... AjI). B

this procedure one arrives, after simplification, at the following

equations for the optimal Ak:

j-i i-1

r rA + r rA *Al *H (I -A*)
i=k--I t=k+l

j-1 j-1

+ rI [I (l-A*) - rj+1 Hl (1-A) = 0, k- 1,2,...,j-i

t=k+1 t=k

One can derive a recurrence for the Ak in terms of the r1 , Solv-

ing the kth equation above for Ak, one has

j-1 * i-1 i-1A*k=(r~j -rj)t~~ f] (1-At) ( -ikliAi t1+] (I-A*)

Ak +1lA' Y

j-1 * i

+ r A I (1-At)-r

+ t=k+l

If one takes Pk and Qk as the numerator aid denominator, re- -

spectively, of the above fraction, one arrives at the follov.ing
recursion:

Pk pk1-,411 k. 1)

~(lAk-1) k-1
Qk= Qk+1l k+1) rk~l -rk

k kk kAk= P k'!Q k,

for k = j-2,j-3,...,1, where P 1  Ir+ - r, Q1  rl - rI' and

A1 =Pl/Q 1 . This recurrence enables one to calculate sucv-es-

sively A_, Aj_ 2 ,...,A 1 , and hence the corresponding A

I. = log A ,,"lo(1-p).

i I( I I)
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It is of interest to give explicit formulas for the first few

Ak. This task is somewhat simplified if one sets R = P kZk'j-1

S= QkZk, where Zk = 11 Qi" This leads to another recur-
* i=k+l

rence for the Ak:

Zk k+ k+1

Rk Rk+l(Sk+l-Rk+l)

Sk Sk+l(Sk+l-Rk+l) + Zk(rk+l-rk)

Ak = k Sk

for k = j-2,j-3,...,1, where Z= 1, R 1 = rj+1 - rj, S1 = rj+ 1 - rjyl,

A1  R IS 1 . The advantage of this apparently more cumbersome

recurrence is the avoidance of fractions in the calculation of Zk,

R, and Sk' The expressions for the first three Ak are as follows:

* ( ) /(, )
A = r

j-_ \±jl-/(rj- 2)

A j-3= A j-2 (rj - r,.2)(rj+l-rjl)(r rj°1 rj -r))

The optimum continuous allocation of defensive resources
has been presented above for certain discrete values of A -
namety, those corresponding to each possible choice of j. If one
has defensive resources associated with an A between iwo of these
discrete values, one can perform linear interpolation on the mis-
sile allocations mi corrcr!-onding to the Ai, in order to produce an

approximate solution.
A numerical illustration may be helpful here. Suppos2

p = 0.4 and m = 7, and suppose that offensive weapons are ,observed
to have miss distanc-.s of 1, 4, 5, 7 and 8 from the target. For

j 2, A1  1 4 and the correspon6ing II 1 is 2.71. For j = 3,
A1  1.6, A2 - 2'3 and the corresponding I and nI2 are 3.52 ind

0.80. For j =4, A1 = 7 2, A2 = 2 9, A3 = 1. 3 ýmd the corre-

sponding m 1 2 and m3 a- ! 4.56, 2.94 and 2.15. The defensive
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stockpile of 7 is located .503 of the way between 4.32 and 9.65;
therefore ni = 3.52 + (.503)(4.56-3.52) = 4.05,
M2 = 0.80 + (.503)(2.94-0.80) = 1.87, and m 3 = (.503)(2.15) = 1.08.

Of course, since it is impossible to allocate fractional missiles,
a good practical allocation is mi 4, m 2 = 2, m 3 = 1. The best
way of rounding the continuous variables will not always be so
obvious. *

Once the Aj-i are 1Lnown, the expected distance to the near-
est penetrator, E, can be readily calculated. However, explicit
algebraic expressions for E are cumbersome. For j = 2,

E = rlr 3 -r . r3 -r,) -- r 2

One practical difficulty in using this allocation scheme is
that the A must be computed during the course of the engage-
ment rather than beforehand. As an alternative to the above pro-
cedure, one can derive allocation strategies corresponding to a
different criterion: allocate the defensive missiles to maxin-mize
the expected rank of the nearest offensive weapoi. penetrating the
defense. In other words, actual distances ri are replaced with the
ranks i and the problem solved as before. Now, it is possible to
store an allocation strategy in a computer before the actual en-

gagement occurs: it will be a function of A . (l-p)m alone. In
general, this should lead to allocations very similar to those pro-
duced by the above method.

The problem of allocating defensive missiles to maximize
the rank of the nearest penetrator is equivalent to the problem of
allocating defensive missiles to maximize the expected number of
weapons to the first penetrator in an attack of indeterminate size.
This latter problem is discussed in Sections 3.2.1 and 3.2.2.

3.2 DEFENSE STRATEGIES AGAINST A SEQUENTIAL ATTACK

OF UNKNOWN SIZE

Suppose that the defense knows the lethal radius, R, of an
offensive weapon but does not know the size of the offensive attack.
In particular, assume that offensive weapons appear one at a time,
and the defense must decide how many missiles to allocate to each
one before the next weapon appears. Clearly, the defense will only
allocate missiles to that subset of the attack which has predicted
impact-points within a distance R of the target. Intuitivelyv, it is
clear that one would like to allocate more defensive missiles to
earlier weapons and fewer to later ones, in order to avoid target

, I
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destruction while one still has a substantial stockpile of defensive

missiles.

3.2.1 Maximizing thc Expccted Rank of the First Penetrator

It is difficult to allocate defensive missiles to minimize the
probability of target destruction when the attack size is unknown.
A procedure that achieves minimum probability for one (hypoth-
esized) attack size will not work for another value. However, the
following criterion should work reasonably well over a range of
attack sizes: allocate the defensive missiles to ma-ximize the ex-
pected number of weapons to the first penetrator (that weapon
against which all defensive weapons allocated fail). This approach
may be useful in another situation. Often a defense objective is
stated, somewhat vaguely, as that of maximizmg the price (ii
number of weapons) the offense must pay to achieve a high confti-
dence of target destruction. Rather than debale the somewhat
arbitrary level of confidence to be set, it may be plausible to
modify such a criterion to that of maximizing the ex)ected rank
of the first penetrator. This procedure will tend to have the effect
of charging a high price over a range of levels of confidence.

Even when the attack size is known, a strategy of miaxinniz-
ing the expected raink of the first penetrator may make sense. For
example, the target may be an air base which is warned that an
attack is about to take place: as the aircraft sequentially h(atve the
base the target value diminishes with the passage of time (later
weapons are less threatening than earlier ones). Let mi denote
the number of defensive missiles to be allocated to the ith weapon -
(in order of arrival) which lands within a distance R of the target,
and let Bi denote the probability that this weapon will penetrate:

Bi - (1-p) i Then the expected number of weapons (landing in-

side a circle ot1 rdius P centered on the target) to the first pene-
trator is

j-1 J

E = B1 1- 213 2 (1-13) +... + 1133 (1-n13) 1.41 (1i-n)
i~l i=l :

if the first j weapons (landing inside the circle) arc assigned dc-
fensive missiles:

ii In . "0 for i- i'. j = 0

i~I

I
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This problem is identical to that of the previous section if
one sets r = i. To maximize E approximately, subject to the con-

straint that l Bi : B (l-p) ,one may proceed as in the pre-

vious section. Substitute B(BB ... B for B. in the abovel 2 "' -1 34
equation and solve the system of equations >,Ei•."i = 0,

i = 1,2,... ,j-1 to obtain the optimum values of BB 2".' Bj_1. Se-

lect that value of B that makes B. = 1; that is, let B = BB .
j ~ ~ e B =B * B i1

The recursion formulas of the previous section simplify slightly,
since rk+1 - rk

The optimum values of B. and the expected number of weap-

ons to the first penetrator are tabulated below for those defense
resources B such that B = B 1 B2 ... D1' for I 40.

The second column of this table gives the optimum BI as-

sociated with each of the weapons to which defensive missiles are
assigned. (If, for example, the fifteenth offensive weapon is the
first one not engaged, then the entries in the second column give
B 0.5000, B 1 3  0.2500,...,B 1 = 0.0186.) Tiie third column

gives -loge B, which is equal to -inI log (1-p)). When p is near unity,

this is approximately equal to mp. It would be worthwhile to de-
velop asymptotic expressions for each of these colunis.

A numerical illustration may be helpful here. Suppose
p ý 0.4 and m = 7; then -log (I -p) = .511. 1 the third weapon is

the first one not engaged, then B 2  .5000, and B 2500. The

total defensive missile stockpile is equal to in =(2.08)"(.511) =4.06,
which is allocated 12 = .69/.511 = 1.35 and mI I= in - 2 2.71.

If the fourth weapon is the first one not engaged, then B 3 = .5000,
B 2 = .2500, and B1  .1500. The total defensive missile stockpile

is equal to :n (3.98),'(.511) = 7.80, which is allocated as follows:
113 = .69".511 = 1.35, m2  -_ (2.08- .69)./.511 = 2.71, and

m1 1 m - m3 - 12 - 3.74. The defensive stockpile is located .786

of the wav between 4.06 and 7.80; therefore
I = 2.7i + .786(3.74 -2.7 1) - 3. 52,

m 2 = 1.35 + .786(2.71 -1.35) = 2.42, and m3  = (.786)(1.35) - 1.06.

Of course, since it is imnpossible to allocate the fractional mis-
siles, a good practical allocation is m 1 = 4, 12 2 and m = 1.

Again, round-off can be expected to be a problem.
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OPTIMUM ALLOCATION OF DEFENSE RESOURCES AND THE
EXPECTED NUMBER OF THE FIRST PENETRATING WEAPON

Total
Number of Probability of Defensive

First Penetration of Missile
Unengaged Engaged Stockpile Expected Number
Offensive Weapons Required of First

Weapon (in Reverse Order) (Normatized) Penetrator

1 0.5000 0.00 1.00
2 0.2500 0.69 1.50
3 0.1500 2.08 2.13
4 0.1020 3.98 2.81
5 0.0752 6.26 3.52

6 0.0586 8.85 4.26
7 0.0474 11.68 5.01
6 0.0395 14.73 5.77 -
9 0.0337 17.96 6.54

10 0.0292 21.35 7.32
11 0.0257 24.89 8.11
12 0.0229 28.55 8.90
13 0.0205 32.33 9.t9
14 0.0186 36.21 10.50
15 0.0170 40.19 11,30
16 0.0156 44.26 12.11
17 0.0144 48.43 12.92
18 0.0134 52.66 13.73
19 0.0125 56.97 14.55
20 0.0117 61.35 15.37

21 0.0110 65.80 16.19
22 0.0103 70.31 17.01
23 0.0098 74.89 17.83
24 0.0092 79.51 18.66
25 0.0088 84.20 19.48

26 0.0084 88.93 20.31
27 0.0080 93.72 21.14
28 0.0076 98.55 21.98
29 0.0073 103.43 22.81
30 0.0070 108.36 23.64

31 0.0067 113.32 24.48
32 0.0064 118,33 25.31
33 0.0062 123.38 26.15
34 0.0059 128.47 26.99
35 0.0057 133.59 27.83
36 0.0055 138.75 28.67
37 0.0053 143.95 29.51
38 0.0052 149.18 30.35
39 0.0049 154.45 31.20
40 - 159.72 32.05

4
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There exists an even simpler missile allocation strategy
which is very nearly optimum. If one has m defensive missiles,
allocate approximatfely m/1h of these to each of "-e first h weapons
and none to the (h+l)st weapon. Numerical calculations indicate
that the optimum choice of h is about 90 per cent of the first unen-
gaged weapon under the optimum allocation: the loss in the ex-
pected number of the first penetrator is only 6 per cent compared
with the (continuous) optimum.

EVEN ALLOCATION OF DEFENSE RESOURCES AND THE EX-

PECTED NUMBER OF TilE FIRST PENETRATING WEAPON

Number of First
Uneingaged Offensive Probability of

Weapon Penetration for
Anv Engiaged ExpIected Number

Optimum Even Weapon of First
Allocation Allocation (in Reverse Order) Penetrator

2 2 0.5000 1.50
3 3 0.3535 2.06
4 4 0.2658 2.67
5 4 0.1342 3.31
6 5 0.1095 4.02
7 6 0.0966 4.772

8 7 0.0858 5.43
9 8 0.0769 6.15

10 9 0.0695 6.87

12 11 0.0574 8.32
11 12 0.0365 9.83
16 14 0.0332 11.35
18 16 0.0299 12.87
20 18 0.0271 14.40
25 22 0.0181 18.27
30 27 0.0155 22.20
40 36 0.0104 30.14

3.2.2 An Exact Procedure for Maximizing the Expected Rank

If the defensive missile reliability p is close to 1, it is de-
sirable to replace the missile allocation procedure presented
above with one which makes integer allocations. The gener-al or.n
of a typical allocation is clear, provided m is not too large: for
the first j offensive weapons, one should allocate two defensive
missiles apiece, and for the last i offensive weapons, one shoUld
allocate one defensive missile apiece.

It is possible to determine the optimal allocation by dynamic
programming: however, the problem may also be treated directly.
Set
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q p

x 1-p(1-p)
yr= 1 - p(i-p) 2

3
z =I-p(-p)

Thus q, x, y, and z are the probabilities a given offensive weal)on
penetrates if 0, 1, 2, or 3 defensive missiles respectively are as-
signed to it.

Suppose the defense allocates one missile to each of the first
In 1 weapons. Then the expected rank of the first penetrator is

m,1 11+1 2 m+1
E(Or1) 1 + x 4 .. + x + (Ix +q x  +

1-xm~ xm-+ m

ni+1-p ), p~l-p)

Suppose the defense instead allocates two missiles to the first
weapon and one missile to each of the next in - 1 weapons. Then
the expected rank of the first penetrator is

E(1,m-1) = 1 +y + vx + yx2 + yx1-1+ yx m-lq+ yxq-i -vx q ..

1 + x1 11-1 UX m -1 1

1 -x 1 -q
= 1+(yyml)p1)

The second course of action will be preferable for the de-
fense whenever E(l,m-1) '> E(m+l). After some calculation one
finds that

E(1,r-1) E(m+1) = (l - I

Therefore E(l,m-1) >-E(m+l) whenever

x1Kxm 1 Xl /(1p-p~pp ,

so that

m l -Iog(1+Pp-p+pp) 1og x + I I
or equivalently,

L:

I
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m j [-}og(l+p-p+pp)/log xj + 2

In what follows, the last expression will be designated by in 0.*
Let M be the defensive stockpile. Assume either that M is

not too large or that for some reason the defense cannot assign
more than two missiles to any weapon. Then the complete solution
is as follows. If M in M0 , assign one missile each to the first M

weapons. If M ", mo0 assign two missiles each to the first

I (M-m 0 +1)'21 weapons and one missile each to the next

M - I(M-mo+lU,"21 weapons. A significant special case is that in

which p = 1, when one has simply

il 0  = log(l'2) 'log p] + 1

For example, suppose ) - 0.8, p = 1. i'hen m0 =3. 111 + 1 = 4.

Thus as the stockpile grows, the successive allocations are as
follows:

(0,1),(0,2),(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),...

Now consider the possibility that three missiles may be
assigned to an offensive weapon. Suppose the defense assigns two
missiles each to the first n weapons and one each to the next in
weapons. Then the expected rank of the first penetrator is
E(n,m) 1 + y +y +.. + n-1 + n + xy + x 2 n y+ x ln

im ,n 2mn

+xmyn +qx y +q x y A...
n ill ill xmly nl-x ± N '+y + -

1-y 1-x 1-q

-x-A
-1-p x Y. p) p(1-p)

If the defense assigns three missiles to the first weapon, two each
to the next n, and one each to the next in, the expected rank of the
first penetrator is

E(l,n,m)-- 1 + z + zy + ... + y +zyn + zyX + +ZnYX2 4-...

n m- 11in n l zvnxq 2+zy x + zvx + Zynx +zx + ...
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n II nmr
y1+z 1n 1 xn n -x zvnx

+ -------- zy nx- + - P)1-y 1-x 1-q

=1+ 1i-p ~ 1 --1p zy X l-p.

From these formulas it is possible to compare E(1,n,m 0 -1)

with E(n+l ,m0 ) and E(1,n-1 ,m0) with E(n+! ,m 0 -1). These are the

most crucial comparisons, although the possibility that other com-

parisons may sometimes be necessary cannot be ruled out.

First, consider the comparison of E(1,n,nmh-l) with

E(n+l,m 0 ). Using the above formulas one has, ai*,er some cal-

culation, ni 1
E(1,n,m 0 -1) - E(n+l,m 0 ) = - ynp - ynPx u (l+ppp(lop)2

rherefore E(1,n,n 0 - 1) > E(n4+l ,m) whenever

y A <1 p + 2))

so that

n Rf [log(~ + Xmol1+P-p2P(l-P)2)log J 4+ 1

This expression will be denoted by no. If p 1,

no = [-log(p + P (3-2p) log(2p-p2)] + I

Second, compare E(1,n-l,m 0 ) with E(n+l,m 0 -1). One has

E(1,n-l,m0) - E(n+l,m 0 -1)

= p(1 - yn-1(j+p-p(1 -p) 2 ) + yn-lxm0 -pl3\

Th ýrefore E(1,n-1,m 0) > E(n+l,m 0 .-1) whenever
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yn-1 1 p - p(1-p) 2 
- x 1 2

so that

n log +p - p(l-p)2 0 2 og + 2

This expression will be denoted by n1 . If p = 1,

n [: logý -3P-p (log 2p+P2)1 , 2

Suppose that M is not too large or that the defense cannot
assign more than three missiles. Then if -1 _ n1 - no 0  2, the

above results suffice to determine the opnimal allocation. The
solution is hard to state concisely, but can be given as follows.
Form M - (n +n 1 +m0). If this expression is negative, no weapon

is assigned three missiles and the solution is as before. Other-
wise, define k and r by

M - (n0 + n 1 +m 0) = 3k 4 rr ,0:r 2

Set i = n 1 - nO. Then the allocation is as follows. The number of

weapons assigned three, two and one missiles are k + air, n0 + b ir,

m 0 + cir respectively, where air, bit, Cir are given by the follow-

ing table:

i-- " r air bir Cir

o 1 -2 0
1 0 0 0

2 1 -1 0

i =0: r air bir Cir

0 0 0 0

1 1 -1 0

2 1 0 -1
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i 1: r a. b. c.ir ir ir

0 0 1 -1

1 1 0 -1

2 1 0 0

=2: ra ir bir Oir

01 0 -1

10 2 -1

21 1-1

This solution is complete, provided -1 - n 1 - n0 = 2. Situa-

tions in which n 1 - n0 exceeds this range appear rather uncommon.
If that range is exceeded, it is necessary to compare E(2,n,m) with
E(n+3,mi), where m = m~or 'm0- 1: even more remote compari-

sons might be necessary on rare occasions. Thus, although the
above analysis should be satisfactory in most cases, a more com-
plete analysis of the problem would be very desirable. Another
shortcoming of the current knowledge of the problem is that no
solution has been given which permits more than three missiles
to be assigned to an offensive weapon. There seems some hope
that an overall solution might be given; also, since E(kl,...,kr) is
fairly easily calculated in any specific case, a solution to any
specific problem can be found by trial and error. In addition,
approximations to the solution exist; however, at present, if it is
necessary to find an exact solution in which the allocations to in-
dividual weapons are expected to be large, it is probably best to
use dynamic programming.

The following table summarizes the defense strategies for
p = 1 and selected values of p, assuming no weapon is assigned
more than three missiles. For each p, the table gives mr0 , n 0 ,

nl, i and M, the smallest defense stockpile for which the first

weaponreceives three weapons. (Note, however, that if the stock-
pile is M + 1, the first wea on may not receive three missiles:
note also that sometimes M1= m 0 + no - n1 4- 1.)

p 10 n0 n 1 i

0.7 2 5 4 -1 11
0.75 3 6 6 0 16
0.8 4 8 10 2 22
0.85 5 16 18 2 39
0.9 7 39 39 0 86
0.95 14 159 159 0 333
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To illustrate the use of this table, consider again the case
p =.8, p = 1, soi =2. If M =22 k=0, r =0. and the allocation is
(0+1,8+0,4-1) =(1,8,3). If M = b3, k =-0, r = 1, and the allocation
is (0,10,3). Likewise if M = 24, the allocation is (1,9,3). After
this, the last two numbers of the allocation are periodic with
period three. Thus as the stockpile grows, the successive alloca-
tions are as follows:

(0,0,1) ,(0,0,2) ,(0,0,3) (0,0,4) ,(0,1,3),(0,1,4) ,. .. ,(0,8,4) ,(0,9,3),

(1,8,3),(0,10,3),(1,9,3),(2,8,3) ,(i,l0,3),(2,9,3),(3,8,3),.

3.2.3 A Constant Value Decrement Criterion

Everett (1968) suggestLs an alternative defense strategy to be
used when the attack is sequential and of unknown size. Instead of
maximizing the expected number of weapons to the first penetrator,
he designs a defense strategy which makes the probability of target
destruction proportional to the attack size, up to the point of def(n-
sive missile exhaustion. It is immaterial to the offense what
attack level is selected: the increase in target destruction prob-
ability achieved by assigning one additional weapon to the target
is always the same. This strategy is sometimes called a constant
value decrement (or CVD) doctrine. Of course, as in any continu-
ous model, there is a round-off problem.

Everett assumes a somewhat more general model than that
of Section 3.2.1; the probability of target kill by an unintercepted
weapon is equal to a constant p. Both the probability of target kill
p and the defensive missile reliability p are known by the defense.
Let k be the increase in the probability of target destruction when
one more weapon is directed against it; the CVD doctrine must
assure the defense that the probability of target kill by i weapons
is ik for i _< m and near unity for n, where n is the number of
weapons needed to exhaust the defensive missile stockpile, m. Let
P. denote the probability of target kill by an attack of i weapons,

1and let mj be the number of defensive missiles assigned to the jth

weapon to arrive, 1 j i.

Pi 1- 1 -p (1-) ik

j=1

Solving for p, one finds that

( i.) k
(-p) I = _ _ _= (1-ik+k)p

I,
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Since tne piobabi]ty of marget kill increases in steps ot iz. until
reaching the vicinity of unity at i = n, one sets k --: 1/n and substi-
tutes this into the above equatinn. Sotting for mi, one obtains

m log((1-i•n~p '1b~lo) , 1

n

i=l 1

which gives nearly the optimun-, defensive misrile aocati on. If
p <1, one finds thiat III 0; in practice, m should be close

Cenough to zero not to cause a problem.

A numerical illustration may be helpful here. In order to
compare this allocation with the earlier one, assume that p 1,
p 0.4 and m 7. Ifn is assumed to be 4, then m 1  2.71,

12 = 2.14, m3  1.35 and m 4 = 0; the total defensive stockpile

needed is 6.20. If n is assumed to be 5, then =1 3.14, m2 = 2.71,

m 3 = 2.t4, m 4  1.35 and I5 = 0: the total defensive stockpile

needed is 9.34. Interpolating linearly between these solutions, one
finds tat the optimum allocation corresponding to a stockpile of
seven defensive missiles is mI 2.82., na = 2.28, I 3 = 1.55 and

m 4  0.35. Interpolating similarly between 1. 5 and 1'4, the value

of k is found to be 0.238.

This allocation is quite different from the one (in Section I
3.2.1) which maximizes the expected number of weapons to tihe
first penetrator. However, the reduction in the expected number
of weapons to the first Penetrator is quite small:

E ý k + 2k .. nk =kn(n+1)/2 = (o+10'2 .)

For n equal to 5, E - 3: for n equal to 4, E = 2.5. Interpolating, E
is equal to 2.624. very little less than the theoretical ma~ximum of
2.13 + 0.768 (2.81-2.13) - 2.68 obtained usin- the allocation given
in Section 3.2.t.

Obviously, it is impossible to allocate fractional defensive
missiles; therefore, any reliable straftcgv rill depart somewhat
fron) the idea.! one in which the expected damage is proportional
to the numh.Tr of offensive weapons. To get around this nifficulty,
Everett suggests thai. the defense allocate [rni missiles with

probauility pi and mi] + 1 missiles with probability i - pi' where
P. is chosen 30 that

A

L. Pii hse ota
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Pi~l~p)[mil[mi]+l m
Pp-) + (1-Pi) (1-p) =(l -p)

Even though any specific realization will not be a CVD doctrine,
the average over all possible realizations will be. Solving for pi,
one finds that A

Pi :)() -o) -(I P)

Note that this strategy does not use a fixed number of defensive
missiles: in general, extra missiles will be required to take care
of the variability inherent in Everett's randomized allocation.
(For example, in the example given above, nine missiles instead
of seven must be provided at the targ:et.) A razmdomized allocation
will typically result in unused defensive missiles: hence, it is in-
ferior (in the sense of maximizing the expected number of weapons
to the first penetrator) to many nonrandomized strategies which
fully use the required extra missiles. This objection is mitigated
if there is more th,- one target being defended and one has the
option of shifting defensive missiles from one target to another
(as needed by the randomization).

However, a more serious objection to randomization is that
it will generally lead to firing doctrines in which the number of
missiles directed at the ith incoming weapon is greater than the
number of missiles directed at the (i+l)st incoming weapon.
Clearly, a firing doctrine such as this is inferior (in the sense de-
scribed above) to one which reverses these allocations, even if
the latter is less faithful to the CVD doctrine.

Everett has tabulated the parameter k, the increase in prob-
ability of target destruction per offensive weapon, for a number of
different values of m, p and p when a constant value decrenent de-
fense strategy is used. This table is given on the next page

3,2.4 Known Distribution on Attack Size

Consider now a somewhat different allocation problem.
Assume, ii particular, that the defense knows the probability dis-
tribution of the attack size: the probability that the offense will
attack with i or more weapons inside the lethal radius, R, is equal
to Pi, i = 1, 2 ,...,n, and pnl n =0. It is assumed that offensive
weapons arrive one at a time: when the ith weapon arrives, mi
missiles are assigned to it from a stockpile of In missiles. In-
stead of maximizing the expected number of weapons to the first
penetrator, one allocates missiles to minimize the eq)ected num-
ber of penetrators: that is, one wishes to select (111,12"...111
where !mi = m, so as to minimize,

IJ

Iq

k.
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INCREASE IN PROBABILITY OF TARGET DESTRUCTION
PER OFFENSIVE WEAPON USED

(For Weapons Engaged by the Defense)

Defense p 1.0 1.0 1.0 1.0 1.0 0.5 0.2 0.1 0.05
Stockqpile

m p 0.5 0.6 0.7 0.8 0.9 0.8 0.8 0.8 0.8

20 .107 .091 .076 .065 .053 .051 .034 .026 .018

50 .058 .048 .040 .033 .027 .028 .020 .015 .011

100 .036 .029 .024 .020 .016 .016 .013 .010 .008

200 .021 .017 .014 .012 .008 .010 .008 .006 .005

500 .010 .008 .007 .006 .004 .005 .004 .003 003

1000 .006 .005 .004 .003 .002 .003 .002 .002 .002

n
E =E P1 (1-p) 1 •

i-1i

where p is the defensive missile reliability. The reduction in the
expected number of penetrators resulting from adding the jth mis-

silo to the ith off :."ve weapon i,; nj(i-p) - (1 p)3  R(ij).

Note that R(ij) -> R(i,j+l). in other words, each new missile con-
tributes less to the defense than the preceding one. To obtain the
optimum allocation, one simply assignes defensive missiles one at
a time where they will do the most good (that is, achieve the
greatest reduction in the expected number of penetrators). For
example, assume p1 = 1, P2 =- 2/3, P 3 ý 0 and p = 1/2. The first

missile is assigned to the first weapon since R(l,1) = 1/2 and
R(2,1) =1/3; the second missile is assigned to the second weapon
since R(1,2) 1/4 and R(2.1) = 1/3: the third missile is assLTned
to the first weapon since V(1,2) = 1/4 and R(2,2) = 1/6: and so on,
until the stockpile is exhausted. The fact that this necessarily
leads to the optimal allocation follows from the fact that
R(ij) R-- l(i,j+l).

There is another method which can be useful when it is de-
sired to find the allocation of missiles corresponding to a single
stockpile m, rather than a range of stockpiles. Oire can always
solve the equations

p i -P i+ l I l-p ) , i =1 ,2 ,...,n
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for xi and Yi' where x, is a nmniegative integer and 0 vj "

Let A% denote tie grcatest integer contained in ('xxin) n, and B h'

eqvual to >:x i ; - nA. Then a tentative optimunj allotationj of deI-

fensive nlissiles is

I. =A - x. for 1I n - B1

I. = A + I- x. for n B + I i -- n
1 1

It will generally happen that in 0 for i '- " this imnplies that

the corresponding probability p1 - p. 1 of i attacking weapons is

too small to allocate a defensive missile. One sho'2ld then repeat
this procedure with n' in place of n , and so on until A. nonneC'ative
set of allocations is obtained. The repetitive nature of this pro-
cedure diminishes its usefulness for machine computation: how-
ever it can be arranged in a forn, that is rather suitable for hand
computation. A closely related approach can be found in l)ym and
Schwartz (1969).

1f one is interested in defensive missile altloations corre-
spondinig to all stock-piles less than or equal to m, there are vari-
ous ways of ex0pre-sinY those allocations i a table, given a set of
values plp2,. .. ,pn. Although not the most compact, tMe foliowing

for:, of table isz useful, which enables one to read off, one at a
time, the successive allocations to offensive weapons: each row
corresponds to the number of offensive weapons previously
assigned missiles (0,1,...,n-1) each column corresponds to the
number of defensive missiles left in the stockpile (0,1,2,...,m), and
each entry tells how many missiles should be allocated to the cur-
rent offensive N•eapon. The allocation corresponding to a given
stockpile size n, can be easily read off ;omn thc table. Suppose
that the allocation to the first weapon (in row 0, column in is in I
then one goes to row 1, column in - mI for the allocation to the

second weapon. If this is in2 , then one goes to row 2, colunm

m - n 1 -II for the allocation to the third weapon, and so on.

One way of constructing this table is to use dynamic pro-
gramming, while turning the problem around by building up the
allocation table from the last engaged weapon to the first. Let
mn(j,i) denote the number of defensive missiles to be assigned to
the (j 1)st attacker when i defensive missiles remain: let ,(j.,i)
denote the expected number of future penetrators if .i attackers
have already been observed, i missiles remain, and the allocation
table is used to assign missiles to weapons arriving later.
Clearly, m(j,0) = 0 and me(j,1) 1 for 0" j n - 1; the corre-
sponcing g(j,i) are

I-
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n

0(j,O) E Pk/PJ

k --j -+1

g(,1)- (1-P) +g(j+1,0))pjl+1 1) j

The g(j,i) and ni(j,i) are recursively calculated using the equations

(j ,i) ý minn (1 - 1,)k 4 1 - pli -pj

m(j,i) = minimizing value of k

It is not too diffi ult to generalize these rccursivc equations to in-
clude replacement of early-launch failures of defensive missiles,
or to allow the defensive missile rcliability to vary with i and j.

3.2.5 The Selection of an Attack Distribution
In order to derive these missile allocations, one must know

the probability pi that the offense %ill attack the target with i or

more weapons. At least two probability density functions merit
consideration:

1. If the offense has a weapon launch probability of s, and
attempts to launch n weapons, then the number on target
is given by the binomial probability density fuiction:

i n-i

Pi-P+l = n)si(ls)ni 1

The defense must estimate both s and n beforehand, not
necessarily an easy task. On the other hand, for many
reasons, it is extremely desirable that the defense make
such an estimate. It is possible to express the uncer-
tainty about s and n by replacing the above density by
some linear combination of binomial densities.

2. Perhaps the offense will fire weapons at a target until it
believes that it has launched a "successful" weapon (here
"successful" may be defined as one predicted to land
very near the target, or one which the offense believes
has penetrated the defense). If the probability of calling
a weapon "successful" is s, and is independent from
weapon to weapon, then the number of "unsuccessful"
weapons allocated to the target is given by a geometric
probability density function:

Pi- Pi+ l-sis
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Again, the dcfen•e must estimdte s beforchand. The
geometric distribution has one property which may
strongly appeal to the eneixy, quite apart from any
5uCcess-prediction SchmenC the coinditional pro)babil-
itv' df'n.qity function of i more w\apoll a trrivals, 1 iven
that k have already arrived, is independent of k. In
othelr words, the defense can gain no ilnfrnmation about
the probable future attack size during the course of the
attack.

If thc -eometric attck distribution is assumed, the alloca-
tion tUble describcd earl icr takes a part cularlv simph' form - :lll
rows are identical. In order t.o obtain some idea of the sensitivity
of the defensive allocation to the assumption of the offensive
parameter s, a sample allocation table has been prcpared (see next
page). In this table, the independent variable has been transformed
from s to E = (1-s) "s.

3.3 DEFENSE STRATEGIES AGAINST A SEQUENTIAL ATTACK
BY WEAPONS OF UNKNOWN LETHAL RADIUS

Consider now an entirely new class of offensive xcaipon
attacks. Suppose that the defense knows the size, n, of the attack,
but not the lethal radius, R, of the offensive weapons, which arrive
one at a time. To simplify thc problem, assume that defensive
missiles have perfect reliability (p = 1), so that only one defensive
missile need be assigned to an offensive weapon. The defense's
p)roblem can be summarized as follows. An offensive weapon
appears, and the defense observes that it will impact at a distance
r from the target if it is not intercepted. The defense has in mis-
siles available, and knows exactly n additional offensive missiles
will arrive later. Should he destroy this weapon, or should lie
save his missiles for potentially more threatenino (smaller values
of r) later weapons?

The defense strategy is influenced by his knowledge of the
probability density function of impact-points of the offensive
weapons. To simplify the analysis, consider two extreme cases:

a. The defense knows nothing about the density function,
and must learn from obseivations of actual ri early in

1
the attack which ones are "close" and which ones
"distant."

b. The defense knows the exact density function, so that he
can calculate for any observed r the probability that a
random offensive weapon will land closer to the target.

Obviously, the defense should perform better in the second case
than in the first.



3.3 99

~ .~t' C'~M CM '. (N ( C4- - . (

-4-.- --

L- HI D C C

'- *" I 0 = - C' C' ,] ( (N

C)CD

cl m~ C'.C\ ti- 0 CI

CID- - C'] C] (C ']-- C'3 C

O D C] 0 CD I C I '~C%] .- 0CI

S''IV

S0JJS C 9 . C ( C13 C9] MN C-

-4 .ý I-'

0 - C •r m' ,-- 3. C)l

z 0

0 0q -( Nc'3(Cq ~ C.

- m --

SNC

,.C ) , • L '

0 r•. .<cc cc~~c.



100 3.3.1

In order to determine an optimum strategy, one must have a
criterion of effectiveness. Again, the p)robability of target destruc-
tion cannot be used directly, so substitutes must be sought. Two
reasonable possibilities are:

a. Maximize the probability that the offensive weapon lind-
ing nearest the target is assigned a defensive missile.

b. Mlaximize the expected total score of the offensive
weapons destroyed, where the score of the ith weapon is
the probability that a i'andomn offensive weapon will Land
farther from the target than the ith weapon did.

Note that the first criterion does not guarantee that all defensive
missiles will be used, since the defense need not allocate a defen-
sive missile to any offensive weapon unless it is the closest one to
the target thus far obsereed. On the other halld, the second cri-
terion insures that all defensive missiles will be used.

It should be noted that the models described in the next two
sections were derived for applications unrelated to missile alloca-
tion and target defense.

3.3.1 Maximizing the Probability of Inter'epting the
Nearest Weapon
In an asymptotic sense, the best defensive strategy under the

first criterion has been derived bv Gilbert and Mosteller (1966),
for unknown probability density functions of impact-points. If the
probability density function of impact-points is unknown, Gilbert
and Mosteller show that the optimum strategy must have the fol-
lowing asymptotic form (for n large):

Assume that there are m defensive missiles available,
and let the sequentially-observed offensive weapon
miss-distances be denoted by rl,r 2,...,rn1 . The ith

weapon is assigmed a defensive missile if its miss-
distance ri satisfies any of the following m criteria,
based on the ni constants aI a 2 . a : Set

k = ji n[ and r = min(rl,r 2,...,rk). Then ri satisfies
the jth criterion if ri -i r, but rk+l,rk+2 ,...,r.i_ are all

1*.1

In other words, the defense plays m simultaneous games of the
following form: observe the smallest miss-distance in a fraction
a. of the attack, and then assign a defensive missile to the first

offensive missile appearing with a smaller miss-distance. This
enables the defense to allocate a maximum of in missiles, but it is
possible that not a single missile will be fired usihg this strategy
this will happen if the smallest r. in the attack occurs in the
initial fraction of the attack al).

I
• ' , • I a II I I I I I I If :
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The optimum fractions a are quite tedious to compute:

Gilbert and Mosteller tabulate them for 1 - rn m- 8. For m = 8,
the eight fractions are

a 1 = .0172 a 5 = .0910

a 2 - .0259 a 6 = .1411

a 3 = .0391 a 7 = .2231

a 4 = .0594 a 8 = .3679

For any m -- 8, the ai are to be taken from the last m entries of

this table. For example, for In , 1, the fraction aI is equal to

1,'e = .3679: for m = 2, the two fractions are a 1 C13.e3 ' 2  .2231

and a2 = 1 'e = .3679. It is much easier for the defense to use a

nonoptimum strategy of the following asymptotic form (for n large):

Assume that there are m defensive missiles available,
and let the sequentially-observed offensive weapon
miss-distances be noted by rl,r 22 ,..., Irn. The ith weapon

is assigned a defensive missile if r i < min(rl,r2,...,ri-l),

if i an, and if there are defensive missiles remaining.
In other words, the defense observes the smallest miss-distance
in a fraction a of the attack, and then assigns defensive missiles to
the first m offensive weapons which set new record minimum miss-
distances thereafter. Gilbert and Mosteller show that the optimum

value of a is exp(-(m) ,) and the corresponding probability of
assigning a defensive missile to the weapon with the smallest
miss-distance is

P = exp (- (m'.) .i'm) (r!)

The table on the next page compares the 1-_robabilities of attacking
the closest offensive weapon for these two strategies.

Now suppose that the probability density function of impact-
points, p(r), is known. Gilbert and Mosteller do not derive the
optimum strategy, but instead suggest a nonoptimum strategy of
the following asymptotic form (for n large), which depends on a
single paramefer k'n:

Assumu that there are in defensive missiles available,
and let the sequentially-observed offensive weapon
miss-distances be denoted by rl,r 2 ,...,r,,. The ith
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Probability of

Attacking Closest
Offensive Weapon

im a Optimum Non-Optimum

1 0.368 0.368 0.368

2 0.243 0.591 0.587

3 0.162 0.732 0.726

4 0.109 0.823 0.817

5 0.074 0.883 0.877

6 0.050 0.922 0.917

7 0.034 0.948 0.944

8 0.023 0.965 0.962

weapon is assigned a defensive missile if ri r*

SAr*

where r* is defined by the equation k f p(r)dr.

After this inequality has been satisfied for ni missiles,
the stockpile is exhausted.

In other words, the defense assigns missiles to the first m offen-
sive weapons having miss-distances less than a critical value.
Gilbert and Mosteller have determined the optimum choice of k
and the associated probability of assigning a defensive missile to
the weapon with smallest miss-distance, for 1 m m _ 10.

Probability of
Attacking Closest

m k Offensive Weapon

1 1.503 0.5174

2 2.435 0.7979

3 3.485 0.9254

4 4.641 0.9753

5 5.890 0.9926

6 7.225 0.9980

7 8.637 0.99949

8 10.121 0.99988

9 11.672 0.99997

10 13.284 0.99999



3.3.2 103

This strategry would be improved by replacing it with an optimum
strategy analogous to the one used when the probability density
function of weapon impact-points is unknown: assign defensive mis-
siles if the miss-distance r is less than a critical value and alsoi
is less than all earlier miss-distances rl,r 2 ,...

How good is the simple strategy depending only on kn?
Gilbert and Mosteller derive the optimum strategy for m = 1,
finding that the probability of attacking the closest offensive
weapon approaches 0.5802 as n approaches infinity. This should
be compared with the probability of 0.5174 in the above table. As
a rule of thumb, for small values af ni, a knowledge of the prob-
ability density function of missile impact-points is worth about
m'2 defensive missiles, providing corresponding optimum or non-
optimum defense strategies are used.

3.3.2 Maximizing the Total Score of the Intercepted Weapons

Consider now the best defensive strategy under the somewhat
more realistic second criterion: maximize the expected total
score of the offensive weapons destroyed, %,here the score of a
given weapon is the probability that an offensive weapon drawn at
random from the impact-point population will land farther from
the target than the given weapon did. This strategy was derived by
Gilbert and Mostellcr (1966).

Assume, as usual, that the defensive missile reliability, p,
is equal to unity. Assume that the defense knows p(r), the prob-
ability density function of impact-points. The optimum defense
strategy has the following form:

Suppose that there are t - m defensive missiles re-
maining in the stockpile, and k -_ n offensive weapons
yet to appear in the attack. When the first of the k
offensive weapons appears, with miss-distance r,
assign a defensive missile if r -- r(k,t), where r(kt) isf r(k,t)

defined by U(k,t) f p(r)dr.

Let tE(k,t) denote the expected score of the offensive weapons
destroyed by the final t defensive weapons; in other words, E(k,t)
is the average value of the t probabilities that a random offensive
weapon exceeds the t observed offensive weapon miss-distances.
Then one can write down the following iterative equation:

To determine the mnaximum value of E(k,t), differentiate the above
expression with respect to U(k,t), set this equal to zero, and solve
for E(k,t). This yields

U*(k,t) + (t-l)E*(k-l,t-1) = tE*(k-lt)
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One can easily derive the optimum E*(k,t) and U*(k,t) recursively
with the aid of the initial conditions U*(k,k) = 0, 1 _ k < n,
E*(k,k) = 1.'2, 1 - k -- n, and the iterative equation above. When
in = 1, this specializes to U*(k,i) - E*(k-1,1), and the iterative

equation becomes E*(k,l) = 1+E*(k-1,1) 2 ,2.
It appears difficult to obtain simple analytic expressions for

E*(k,t) and U*(k,t). Gilbert and Mosteller approximate E*(k,l) by
the expression

E*(k,l) = 1 - 2;'(k4loge(k+1)+1.767)

for large values of k. As k and t approach infinity in such a way
that tCk approaches f, it is conjectured that U*(k,t) approaches 1 -f.
One can prove that U*(a+b,a) = 1 - U*(a+b,b), which cuts down
somewhat on the tabulation of U*(k,t).

The tables on the next two pages give selected values of
U*(k,t) and E*(k,t). In order to save space, not all integral values
of k and t have been included. The reader who needs intermediate
values can easily perform two-way interpolation. A less extensive
table of tE*(k,t) is given in Gilbert and Mosteller (1966), for
t = 1(1)3 and k 1(1) 10(10)50(50) 100(100)500(500) 1000.

How well does the above strategy perform relative to what
could be accomplished with perfect information? If one could
examine all k miss-distances of the remaining offensive weapons,
then one could attack those offensive weapons with the t smallest
miss-distances. The expected score of the t smallest miss-
distances is

t

tE (k,t) (1-i,'(k+1)) =t- t(t+1)./2(k±1)

For comparative purposes, the quantity E0 (50,t) has been included
at the bottom of the table of E*(k,t).

3.4 DEFENSE STRATEGIES AGAINST A SEQUENTIAL ATTACK
CONTAINING EXACTLY ONE WEAPON MIXED WITH
DECOYS

Suppose the defense knows that the attack consists of exactly
one offensive weapon and (n-i) offensive decoys. The offensive
weapon is characterized by a single observation (a real number)
drawn from a population with a probability density function f (XW

w
known to the defense, and the decoys are characterized by (n-1)
observations (real numbers) drawn from a probability density
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DECISION PROBABILITIES U6*k,t!

Rullcil:nill, StOCkl)ile Size t

k 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

I

2 .500
3 .625

4 .695 .500
5 .742 .579

6 .775 .634 .500
7 .800 .676 .558

8 .820 .708 .603 .500
9 .836 .735 .639 .546

10 .R50 .757 .669 .584 .500

11 .861 .775 .694 .616 .539
12 .8R 1 .791 .716 .643 .571 .500
13 .879 .804 .734 .666 .599 .533
14 .886 .816 .750 .687 .624 .562 .500
15 .893 .827 .765 .705 .646 .587 .529

16 .899 .836 .777 .720 .665 .610 .355 .500
17 .904 .844 .799 .735 .682 .630 .578 .526
18 .908 .852 .799 .748 .698 .648 .598 .549 .500
19 .913 .858 .808 .759 .711 .664 .617 .570 .523
20 .916 .865 .816 .770 .724 .659 .634 .589 .544 .500

22 .923 .876 .831 .188 .746 .705 .663 .622 .581 .540
24 .929 .885 .844 .804 .765 .727 .688 .651 .613 .575 .500
26 .934 .893 .854 .817 .781 .745 .710 .675 .640 .605 .;35
28 .938 .900 .864 .829 .795 .762 .729 .696 .663 .630 .565 .500
30 .942 .906 .872 .840 .808 .776 .745 .714 .683 .653 .591 .530

32 .945 .911 .879 .849 .819 .789 .760 .730 .701 .672 .615 .557 .500
34 .948 .916 .886 .857 .828 .800 .772 745 .717 .690 .635 .581 .527
36 .951 .920 .892 .864 .837 .810 .784 58 .732 .706 .654 .603 .551 .500
38 .953 .924 .897 .871 .845 .820 .794 .,70 .743 .720 .671 .622 .573 .524
40 .955 .927 .902 .877 .852 .828 .804 -', 80 .756 .733 .686 .639 .593 .546 .500

42 .957 .931 .906 .882 .859 .835 .813 .790 .767 .745 .700 .655 .611 .566 .522
44 .959 .933 .9I0 .887 .864 .842 .820 .799 .777 .755 .713 .670 .627 .585 .542 .500
46 .961 .936 .913 .891 .870 .849 .828 .807 .786 .765 .724 .683 .642 .602 .561 .520

48 .962 .939 .917 .896 .875 .855 .834 .8141 .794 .774 .735 .695 .656 .617 .57q .539
50 .963 .941 .920 .900 .880 .860 .841 .821 .802 .783 .745 .707 .669 .631 .594 .556

L.i
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NORMALIZED SCORES E' k,tL

(and U'ppr lou:id E050,to!

Re 'l1'a in1g Slocse i ze' . t ,

k 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

1 .500
2 .625 .500
3 .695 .59q .500
4 .742 .660 .51• .580
5 .775 .705 .636 .569 .,300

6 .800 .738 i678 .019 .560 .500
7 .820 .764 ,71! .658 .60 .553 .500
8 .836 .786 .737 .689 .642 .9 5 .4S .500
9 .850 .803 .759 .. 15 .672 .C29 .5.;7 .544 .500

10 .861 .1H .777 .i737 .697 .658 .619 .58 0 .540 .500

11 .8"71 .831 . -792 .55 .718 .682 .646 _610 .573' .537
12 .8,79 .812 .806 .. 71 .737 .703 .669 .635 .602 .568 .500
13 .886 .851 .818 .7-P5 .753 .721 .689 .658 .627 .595 .532
14 .893 .960 .828 .797 .1167 .737 .3707 .678 .648 .619 .560 .500
15 .899 .806 .837 .808 .?'79 .751 .723 .695 .66-7 .640 .584 .52,8

IC .904 .8-74 .845 .18 .791 .764 .737 .'711 .I 84 .65 .601 .553 .500
17 .908 .880 .853 .827 .801 .775 .750 .725 .700 .6-7 .623 .576 .526
18 .913 .H86 .860 .835 .810 .7 86 .7P1 .732 .71.1 .690 .643 .596 .548 .500
19 .916 .P91 .866 .842 .818 .795 .772 .749 .726 .704 .659 .014 .569 .523
20 .920 .895 .8'71 .848 .826 .804 .782 .760 .738 .716 .673 .630 .5837 .544 .500

22 .926 .903 .881 .860 .839 .819 .798 .778 .7158 .738 .699 .659 .620 .580 .540 .500
24 .931 .9g0 .P90 .870 .851 .832 .813 ,794 . 5 .75 .7,20 .6R4 .64. .6 11 .774 .537
26 .936 .916 .89- .879 .861 .S43 .825 .808 .790 .773 .739 .705 .671 .637 .603 .569
28 .940 .921 .904 .886 .869 .853 .836 .820 .80.1 .7P" .755 .7723 .691 .660 .62P .596
30 .943 .926 .909 .393 .89717 .861 .846 .830 .8 15 .800 .7"70 .739 .710 .680 .650 .620

32 .946 .930 .914 .899 .884 .869 .854 .340 .825 .811 .782 . -54 726 .69- .669 .641
34 .949 .934 .919 .904 .890 .876 .B62 .848 .834 .821 .794 . 76 40 .T13 G67 .660
36 .952 .937 .923 .909 .895 .882 .869 .S56 .843 .830 .804 7-,h . 753 .728 .702 .67 7
38 .954 .940 .927 .913 .900 .88-7 .875 .862 .850 .838 .813 "789 .?65 .740 71" .692
40 .956 .943 .930 )1-7 .905 .893 .801 .869 .857 .845 .822 .9 96 . . '729 076

42 .958 .945 .933 .321 .909 .897 .886 .874 .863 .152 .829 .807 .785 .763 .741 .-,19
44 .960 .947 .935 .924 .913 .901 .890 .879 .869 .858 .R36 .815 .791 .7-3 .'52 .-m3146 .96i .949 .938 .927 .916 .905 .895 .84 .874 .863 .843 .A22 802 .7.82 61 41

48 .963 .951 .940 .930 .919 .909 .a99 .889 .8R79 .869 .849 .•22 .809 .790 .1 1
50 .964 .953 .942 .932 .922 .912 .902 .893 8ý3 .873 .854 .35 .9L6 .. 98 . 9 .,60

F .•P0 .9"1 .961 .351 .941 .931 .922 .912 .902 .892 .8H73 .853 .833 .813 .794 774
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= function fd(x) also known to the defense. Suppose that the offensive

weapon and decoy observations are presented one at a time to the
defense, who also knows the total attack size n. If the defense has
m missiles each of reliability p, how should they allocate to the
sequentially-arriving offensive objects?

If the offensive weapon wili certainly destroy the target
whenever it is not successfully intercepted, one should allocate
missiles to minimize the probability that the offensive weapon is
not intercepted. It is clear that the specification of the optimum
strategy is rather complicated:

Suppose that there are t "-- m defensive missiles re-
maining in the stockpile, and k - n offensive objects
yet to appear in thr attack. When the first of the k
offensive objects appears, note the value c of its ob-
servation, and allocate i defensive missiles to it if
ci • c i+ I'

Even this sort of strategy is applicable only if fw and f satisfy aw dcertain condition, as will be seen. Note that one can set co equal

to -- and ct+1 equal to +-. This leaves t constants to be deter-

mined for a given t k, k -: n, or a total of nm(m+l--)/2 constants
for a strategy associated with m defensive missiles and n offensive
objects.

The problem of finding an optinum strategy has been solved
by Gorfinkel (1963a). He writes down the probability that the -
weapon will penetrate as

t [it Ci+l t i+1 •

L(k,t) 21 n1-p n fd(x)dIX

If one differentiates L(k,t) with respect to ci, i = 1,2,...,m, and sets
these equal to zero, one obtains the following m implicit equations 7=

for determining the optimum values ci:

fwCi)/fd,(ci) - (n-1)(L(k-l,t-i) - L(k-l,t-i+l))/p(l-p)i-1 -

Note that f w(X).fd(x) must be a monotone increasing function of x if
these equations are to be uniquely solvable for the c.. In statistical

terminology, the probability density functions f (X) and fd(x) are
said to have a monotone likelihood' ratio. If this condition is not
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satisfied, the specification of the optimum strategy takes a more
complicated form than that given above.

Gorfinkel tabulated the L(k,t) associated with the optimum
choice of the ci for k = 1(1)20 and t = 1(1)10. The weapon and decoy

observations were drawn from Gaussian probability density func-
tions with standard deviations equal to unity. He considered four
different cases:

Mean of Decoy Mean of Weapon Missile
Distribution Distribution Reliability

0 1 0.8

0 2 0.8

0 1 0.999

0 2 0.999

In a subsequent handout, Gorfinkel (1993b) has postulated a
more general model - the defense knows that exactly w weapons
are present among the n offensive objects of the attack. He deter-
mined the optimum allocation strategies for two different criteria:
minimizing the probability G(k,t,w) that one or more weapons are
unintercepted, and minimizing the expected number E(k,t,w) of
weapons which are unintercepted. Obviously the two criteria are
identical when only one weapon is present: Gorfinkel showed (by
example) that in general the two criteria lead to different alloca-
tion strategie3. He presented tables of G(k,t,w) and E(k,t,w) for
k = 1(1)15, t = 1(1)10, and w = 1,2,5. His weapon observations were
drawn from a Gaussian probability density function with a mean
and a variance of one; his decoy observations, from a Gauissian
probability density function with a mean of zero and a variance of
one. His defensive missile reliability, p, was assumed to be 0.9.

The missile allocation strategies presented in this section
and the preceding one represent responses to quite different
attacks. In the preceding section, it was assumed that the offense
attacked with n weapons of equal (but unknown) destructive poten-
tial, and the threat of a weapon was measured by its miss-distance.
In the present section, it was assumed that the offense attacked
with exactly one (or exactly NO) weapons of certain destructive po-
tential and n - 1 (or n - w) decoys of no destructive potential, and
the threat of an object was measured by a single real-valued num-
ber (by comparing it with the known probability density functions
of weapons and decoys). The specification of an optimum missile
allocation strategy thus depends critically upon what is assumed
known by the defense about the attack. The reader is cautioned
against using strategies under conditions for which they were not
originally derived. In particular, if one is not certain whether the
offense consists entirely of weapons with relatively small radii of
destruction, or consists of a few weapons with relatively large
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radii of destruction mixed with decoys, then no reasonable strategy
is yet available. It would clearly be desirable to derive "robust"
strategies - that is, strategies which would work reasonably well
against a wide range of possible offensive attacks, rather than op-
timally against a specific attack.

3.5 SHOOT-LOOK-SHOOT DEFENSE STRATEGIES

Thus far in this chapter, it has been assumed that the defense
assigns missiles with individual reliabilities p in salvos to each
offensive weapon. Obviously, the defense can improve performance
if allowed to decide whether or not the ith missile of a salvo has
destroyed the offensive weapon before having to commit the (i+l)st
niLssile. If the ith missile did indeed destroy the weapon, then the
(i+l)st missile can be used against other offensive weapons.

To fix ideas, a k-stage shoot-look-shoot defense strategy is
defined as follows:

allocate m 1 missiles to n offensive weapons, --

observe which weapons have been destroyed (say, nl):

allocate m 2 missiles to the n-n 1 surviving weapons,

observe which weapons have been destroyed (say, n12):

allocate mk-1 missiles to the n - (nI+n2+...+nk-2) surviving
weapons,

observe which weapons have been destroyed (say, nk- ):

allocate m - (m 1+m 2 +.. .+mk-1i) missiles to the n - (nI+n2 2-+...+n k1)

surviving weapons.

This procedure will terminate earlier if all offensive weapons have
been destroyed before the final look.

How should (mlnm 2 ,...,mk-1) be selected? Obviously, one

would like to determine the strategy for which the quantity

n

n (1-p)ipr(i offensive weapons survive)

i=0

is maximized. (As usual, p is the probability that a surviving
weapon will destroy the target.) However, it is much easier to
maximize the probability that no offensive weapons survive, and
this is the criterion actually used. When p is equal to unity (any
surviving weapon destroys the target), the two criteria are
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identical; it would be of interest to kncw under what broader con-
ditions the equivalence holds. (if there are only two offensive
weapons, the two-stage shoot-look-shoot strategy maximizing the
probability of no survivors is equivalent to the shoot-look-shoot
strategy minimizing the exp-ected number of survivors.)

3.5.1 A Two-Stage Shoot-Look-Shoot Strate-:v

One can devise an algorithm for determining the optimum
shoot-look-shoot strategy for any numnber of stages. By a set of
recursion relations, the optimum k-stage shoot-look-shoot strategy
is determined from the (k-i)-stage, (k-2)-stage.. . .. one-stage
shoot-look-shoot strategies. However, these equations become so
unwieldy that it is practical to derive only the two-stage shoot-look-

shoot strategy.

To begin with, it is not hard to show that at each stage the
allocated defensive missiles should be divided as evenly as possi-
ble among the surviving offensive weapons (as was mentioned at
the start of the chapter). When n is equal to two, one can show that
the allocation (ml,m -m1)l and the complementary allocation

(n-ml,m 1 ) of defensive missiles to the first and second stapes

lead to the same probability that neither offensive weapon sur-
vives. Moreover, one can slhw that the optimum allocation is
in mi2 for m even, and m 1 = (ni±+l)/2 for m odd. Whien n is

equal to three or more, analytic results are more difficult to ob- A
tain, and a digital computer nmust be used to discover the optimum
allocation (ml,m-m1 ) for each m and n. There is a great deal of

irregularity in the pattern of solutions - for example, if the mis-
sile reliability is p = 0.8 and there are six offensive weapons, then
the optimum allocations for various m are:

m 10 11 12 13 14 15 16 17 18

1-mn1  6 6 6 7 6 6 12 11 12

1-in1  4 5 6 6 8 9 4 6 6

The optinmum allocation usually consists of an (i-in1 ) that is

divisible by small integers: if only a few offensive weapons survive
to the second stage, usually they can be attacked evenly by the re-
maining missiles.

The following approximate table ignores this fine structure
and gives general guidelines for allocating missiles in a shoot-
look-shoot stralegy. Each entry in the table gives the set of de-
fensive missilc stockpiles correspoonding to a specified attack size
and first-stage allocation strategy. For examile, assume that
there are four offensive weapons, and that the defensive stock-
pile consists of 13 missiles, Since 13 lies in the interval 11 to 17
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in the 4-weapon row, one concludes (by looking at the head of the
column) that the optimum defense consists of engaging each I
attacker with two missiles in the first stage, and using the remain-
ing five missiles against the survivors in the second stage. (Note
that this differs slightly from the true optimum allocation of ni1
equal to 7 and m 2 equal to 6, given above.)

STOCKPILE OF DEFENSIVE MISSILES A
REQUIRED FOR INDICATED STRATEGY

Number of Defensive Missiles
Allocated to Each Offensive

Offensive Weapon at First Stage

Weapons 1 2 3

2 2 to 5 6 to 9 10 to 13
3 3 to 8 9to 13 14 to 18 A
4 4 to 10 11 to 17* 18* to 24

5 5 to 13 14 to 22-

6 6to 15 -

7 7 to I

8 8 to 20*

9 9 to 23*

10 10 to 25* -

This table is valid for defensive missile reliabilities of 0.8,
0.9 and 0.95. For reliabilities of 0.5, all starred integers should
he reduced by one (daggered, by two).

How good is the two-stage shoot-look-shoot strategy? One
can compare the probability that no offensive weapons survive
using an optimum two-stage strategy with the corresponding
probabilities for a one-stage strategy and an rn-stage strategy.
The probability that no offensive weapons survive using a one-
stage strategy is repeated from the beginning of this chapter:

P(1) k- ,

where

K =imn']n, r =i- nk

The ' 'd'ar stratgv denotes that strategy which consists
of assign.r z' ' ,, eive missiles one at a time to offensive weapons
until afl i•j., r.i', weapons are destroyed or all defensive missiles
used up. i:" ,,r-rbabihtv that no offensive weapons survive using
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an rn-stage strategy is simply the probability that n or more de-

fensive missiles do not fail:

P(m)= ( I)(1-P) m1iPi

This can be evaluated with the aid of binomial probability tables.

For high values of missile reliability p), the two-stage shoot-
look-shoot probability that no offensive weapons survive is much
closer to the rn-stage probability than the one-stage probability,
in other words, providing a single "look" in a defensive strategy is
quite worthwhile, but providing two or niore "looks" is much less
so unless the missile reliability is low. The following table illus-
trates the gains of a two-stage strategy. Denote the fractional ain
of the two-stage strategy by the quantity (P(2)-P(1) )i(pi)-P(1)

FRACTIONAL GAIN OF THE TWO-STAGE STRATEGY

Offensive Defensive
Stockpile Stockpile Missile Reliability p

n m 0.5 0.8 0.9 0.95

3 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.005 0.80 0.88 0.92 0.96
6 0.75 0.86 0.90 0.95

6 1.00 1.00 1.00 1.00
4 8 0.76 0.91 0.97 0.99

10 0.70 0.94 0.99 1.00
12 0.74 0.97 1.00 1.00

12 0.76 0.92 0.98 1.00
16 0.54 0.93 0.99 1.0020 0.58 0.98 1.00 1.00

24 0.71 1.00 1.00 1.00

3.5.2 Time-Limited Shoot-Look-Shoot Strategips

Consider now k-stage shoot-look-shoot strategies in which a
single defensive missile is assigned to each offensive weapon at
eah tage and time is limited. In order for the defense to realize
the potential benefits of a k-stage shoot-look-shoot strategy, offen-
sive weapon arrival-times must be so widely separated that the
defense has time to finish the shoot-look-shoot sequence against
one offensive weapon before the next one arrives. However, this
will not always be possible. The following idealized model of a
fire-power-limited shoot-look-shoot defense has been adapted
from Ordway and Rosenstock (1963).
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Assume that a k-stage shoot-look-shoot strategy can be used
against each offensive weapon in isolation. In other words, if T
denotes the time-interval between the first possible assignment of
a defensive missile to an offensive weapon and the destruction of
the target by th, t weapon, and if 7 denotes the time required for a
single defensive missile to attack the weapon (including an evalua-
tion of the outcome), then k - T/ 7

1r. Assume that the offense
attacks with n weapons arriving at equally spaced times to,

to + s7,..., t0 + (n-1)sr. Let the defensive missile reliability be p.

Let the defensive missile stockpile be at least (s(n-1)+k), so that
there is no chance of running out of defensive missiles. If the de-
fense uses the strategy "en gage the nearest offensive weapon until
it has been destroyed," what is the probability P that an offensive
weapon will destroy the target? n

For s - k, the problem is trivial: successive offensive
weapon engagements are independent of each other and

P 1 - ýi-(i-0 k')n

However, when s k, tile evaluation of P is much more difficult.

Assume that s is an integer, and let Q, denote the probability that

the ith offensive weapon is the first one to penetrate the defense.
Then

n

n = E Qi

Obviously, Q, (I-p) k is the probability that the first offensive

weapon is no' destroyed. To evaluate Q 2 1 several possibilities

must be considered. The probability that the first offensive weapon
is destroyed on the ith trial, 1 -:• i -• s, and the second offensive
weapon is not destroyed is given by

Q2 (i) =p( 1 -P)k+i-1, 1 • i- s

If the first offensive weapon is destroyed at trial (s+1) or later,
then the engagement of the second offensive weapon is delayed.
The defense can fire missiles on each of (s+k) possible trials al-
together against the first and second weapons; thax

Q 2 (i) = p(i-p)ks-1 , s + 1 k i k

Summing the Q2 (i) from 1 to k, one obtains
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Q2lP)k(i-(l-p)S +(k-s))(1-p) s~1)

Unfortunately, computation of higher terms is quite tedious- for
example, in calculating Q3 one must consider the two cases 2s .• k
and 2s _ k separately. Ordway and Rosenstock found it necessary
to use a digital computer to compute Pn.

The effectiveness of the defense can be characterized by the
average number of offensive weapons destroyed by the defense be-
fore the first penetrator (assuming infinite offensive and defensive
stockpiles). This is given by

E Z iQi~l

(E+I) can be approximated by the median - that n = no which is a
solution to the equation

0.5 - Q Pn
i=l -

The probability of target destruction, P and the average

number of offensive weapons to the first penetrator, E, can be
readily calculated for two special cases. First, let s = 1 (the time-
interval between successive arrivals of offensive weapons is equal
to the time required for a single missile to attack a weapon). The
probability of target destruction is the probability of having (n-i)
or fewer successful defensive missile firings prior to the occur-
rence of the kth defensive missile failure. This is given by the
cumulative negative binomial distribution,

ni - 1
P = ~k+i-1)(I ) k)iPn E ( i)lpk :

i=0

Note that the first two terms of this sum are equal to Q, and Q2
with s = 1. The average number of weapons destroyed is given by
E - kp/(1-p) when n goes to infinity.

For the second special case, let s = 0 (the offensive missiles
all arrive at the same time). The probability of target destruction
is equal to the probability of having n - 1 or fewer successful de-
fensive missile firings in k trials. If -i - k, this probability is
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obviously unity: if n k, it is given by the cumulative binomial
distribution

n-I ku-

E1- A~1-

i=0

Note that the first two terms of this sum are equal to Q, and

with s = 0. The average number of weapons destroyed is given by
E = kp for any n ---. k

Ordway and Rosenstock conjecture for arbitrary values of s
that E, the average number of weapons to the first penetrator, can
be approximated by the expression

E'= kp (1-sp) , -

which agrees with E when s = 0 and s = 1. This approximation is
likely to be satisfactory only for 0 s - 1: note that E' is infinite
when s =i2p. For a number of different choices of (p,k,s), Ordwav A
and Rosenstock used a digital computer to calculate the median no

and compared this quantity with E'. In most cases, they found that
1 and E' agreed within a few per cent.

The simultaneous attack (s = 0) has ilso been analyzed by
Morgenthaler (1960): however, his model is a somewhat more de-
tailed one. He breaks up the defensive missile attack time 7 into
several comp.ments - a time 7 to send up a defensive missile, a A

time -2 to evaluate the results of an engagement, and a time -3 to

switch the defense from one offensive weapon to another (if the en-
gagement is a success). Note that in the model used by Ordway
and Rosenstock, 7 + I and = 0. Morgenthaler determines
the probability P(j) that j offensive weapons have been destroyed
by the time the first offensive weapon penetrates the defense, as
well as the probability Q(N) that N defensive missiles have been
used. Obviously, his P(j) is analogous to the probability Qj+I de-
fined earlier; the reader interested in formulas for P(j) and Q(N)
(which are somewhat complicated) is referred to his paper.

3.6 DEFENSES LIMITED BY TRAFFIC-HANDLING CAPABILITY

In the preceding section, the defense of a single point target
was overwhelmed whenever offensixe weapons arrived too rapidly
for a shoot-look-shoot strategy to absorb them. However, if
traffic-handling capability is considered, this problem need not be
confined to shoot -look- shoot strategies. Suppose that each weapon
is intercepted by at most one missile. The defense of a target is
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ordinarily implemented with a radar which observes the flight
paths of the incoming weapon and the missile assigned to intercept
it. It may happen that the final T seconds before intercept requires
the undivided attention of the radar: it is not available for monitor-
ing, other offensive weapon interceptions. If too many weapons
arrive at once, the interception of one or more of them may be so
much delayed that they damage the target first.

The following elementary model of traffic-handling capability
may provide some insight. Assume that offensive weapons are
launched in such a manner that they reach the target at equally J
spaced arrival times to, to 4 s, t0 + 2s, .... However, the weapons

are independently subject to launch failures, so that each weapon
actually has a probability p of arriving at the target. Each arriv-
ing weapon is assigned a single defensive missile which has a

probability p of destroying the weapon. The offensive weapons
penetrate the defense for either of two reasons:

(1) defensive missile failure (with probability 1 -p), or

(2) traffic-handling failure (r consecutive offensive wr i";',s
are launched without failure).

In many circumstpnces, a reasonable criterion of effecti muess 's
the expected number of penetrators in n weapon launches. Oh.e Such
situation is that in which the target is relatively impervious 'o lam-
age (that is, if the probability that a penetrating weapon destroys it
is low). In order to simplify the mathematics, overlapping strings
of successful launches causing traffic-handling failure are not
allowed: for example if r = 3, then a string of 4 or 5 consecutive
successful launches is counted as only one pentration, but a string
of 6 consecutive successful launches is counted as two penetra-
tions.

One can show that the expected number of penetrators in n
weapon launches can be put in the following form:

E = n(p(1-p)Y-(1-p)A)+ A(1-(l-p)r (1-pr))

+ Aptr((i -p)r-l(l-p)rA/p) - As(1 -p)ptr

where A = pr pi( 1 -pr) and n = tr + s, 0 < s < r. Ordinarily, the
first term (a linear function of n) plus the second term (a constant
independent of n) will yield adequate accuracy. The first term
gives an upper bound for E.

It is worth noting that this model can give some insight into
shoot-look-shoot strategies as well, by exchan"ging the roles of
offense and defense. Assume that an offensive weapon penetrates
if all defensive missiles in an r-stage shoot-look-shoot fail. If
one replaces p with 1 - p in the above formula and then replaces
p by 1, the resulting formula gives the expected number of
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penetrators after n defensive missiles have been used against a set
of offensive weapons arriving sequentially.

The principal drawback of the above traffic-handling model,
as well as the shoot-look-shoot models discussed in the previous
section, is the unrealistic assumption concerning the offensive
attack. It would be much more realistic to consider an attack not
of equally spaced arrival times, but of arrival times consisting of
n observations drawn at random from (say) a Gaussian distribution
function and arranged in order from earliest to latest. However,
this leads to analytic problem of considerable difficulty. Suppose
one simplifies the model by assuming defensive missiles of perfect
reliability (p = 1), thereby eliijinating the necessity of using shoot-
look-shoot strategies. Let and standard deviation of the probability
density function of offensive weapon arrival times be denoted by a,
and (as before) let the time required for a single defensive missile
to engage an offensive weapon be denoted by T. If offensive weapons
can be engaged only one at a time in the order of their arrival,
then certain offensive weapons cannot be engaged at the time of
their arrival because the defense is still occupied with earlier
weapons. What is the probability density function of the maximum
engagement delay of any of the offensive weapons? Can this be ex-
pressed in closed form as a function of n, T and T?

When n = 2, one can show that the probability that the
second weapon will encounter a delay between t and t -, dt is
given by

p(t)dt = (1/.-1 '2)exp(-(t-T)2!4a 2 )dit,, for t;> 0

The probability of no delay is obtained by integrating this expres-
sion with respect to t from -c to zero. For n equal to 5, 10, 20
and 40, it is necessary to resort to Monte Carlo simulation on a
computer to obtain the expected value of the normalized maximum
delay (dividing the delay by o). The results below are accurate to
about 10 per cent, except for n = 2, where they have been calculated
by means of the preceding formula.

EXPECTED VALUE OF NORMALIZED MAXIMUM DELAY t/O

Normalized Total
Offensive Engagement Time
Stockpile nT/"

n 1 2 4

2 0.104 0.396 1.33

5 0.09 0.35 1.2

10 0.08 0.30 1.1

20 0.06 0.22 1.0

40 0.035 0.15 0.9
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If one can assume that the n arrival-times are drawn from an
ex-oonential distribution function instead of a Gaussian one, then it
is possible to obtain an analytic expression for the probability of no)
delay. Adapting an argument due to Kabak (1972), one obtains

n-1Pr(no delay) = a -(n-1)'. exp(-aTn(n-1)/2)

where the exponential probability density function is given by
f(t) = a exp(-at). Kabak actually obtains a more general result:
he assumes that the radar processing time T is not a constant,
but a random value from the gamma distribution

g(t) = btj-' exp(-bt)./(j-1). . In this situation,

n~i-1

Pr(no delay) = 11 (l+ia/b)-
i=l

However, the expected value of the maximunm delay must (as before)
be obtained by simulation.

3.7 SUMMARY

This chapter presents a wide variety of mathematical models
in which the structure of the target does not come into play. In
general, these models can be considered to represent the simplest
attack-defense situation - a single target defended by a stockpile
of identical unreliable missiles.

If the defense knows the cookie-cutter damage radius of a
salvo of attacking weapons, defense allocation is easy; if the dam-
age radius is not known, it is possible to max-,imize the expected
distance to the nearest unsuccessful 1v.-j tercepted weapon. If the
attack is sequential and the damage radius is knowm, a variety of
models is possible. In one, the attack size is completely unknown
and the defense maximizes the expected number of weapons suc-
cessfully intercepted prior to the first penetrator; in a second, the
probability density function of the attack size is known and the ex-
pected number of penetrators is minimized: in a third, defense
missiles are assigned so that the probability of target destruction
is proportional to attack size (up to a limit determined by the
missile stockpile).

If the attack is sequential and the damage radius is unknown,
then it is necessary to assume that the attack size is known in
order to derive a strategy for deciding whether later weapons wi'l
impact closer than the present weapon. If the aiming-error of the
attacker is also unknown, this can be inferred from early weapon-
arrivals.
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The latter part of the chapter considers the additional options
open to the defense if he can evaluate the success or failure of a
missile in time to launch a subsequent missile against the same
weapon. On the other hand, the defense may be fire-power limited;
that is, he may be unable to engage all weapons because each weapon
requires a finite amount of processing time by the defense system.
If weapons arrive at equally-spaced times, the expected number of
weapons successfully intercepted before the first penetrator can be
calculated; if weapons arrive with an exponential or Gaussian dis-
persion in time, the problem appears to be analytically intractable.



CHAPTER FOUR

OFFENSE AND DEFENSE STRATEGIES FOR

A GROUP OF IDENTICAL TARGETS

Preceding chapters have focused upon the probability of
survival in the no-defense case, and the optimum defense strategies
to be used for a target of unspecified structure when certain char-
acteristics of the attack are not known. In contrast, this chapter
considers one simple type of target structure; it specifies useful -=

offense and defense strategies when a group of identical targets is
under attack. Both offense and defense strategies depend upon the
degree of knowledge each side has concerning the other's stockpile
size and allocation to individual targets, the main purpose of this
chapter is to show how this knowledge affects the choice of a strat-
egy. Strategy is also affected by self-knowledge. For example, if
the defense uan determine which targets have been destroyed early
in the attack, he can allocate defensive missiles to undamaged tar-
gets; this is known as damage assessment. As another example, if
the defense cannot determine which target an offensive weapon is
directed against in time to make an intercept if desired, the defense
strategy is also modified. The ability to identify the target being
attacked is known as attack evaluation.

How does one specify an allocation of offensive weapons or of
defensive missiles? Typically, the offensive weapon allocation is
straightforward: it consists simply of the assignment of a speci-
fied number of weapons to each target in the group. However, the
allocation of defensive missiles need not be this simple. One can
assign a specified number of missiles to the defense of each indi-
vidual target; or, one can assign a specified number of defensive
missiles to a subgroup of targets. In the latter case, defensive
missiles are used against any offensive weapon directed against
any target in the subgroup. In the limit, one can elect to defend the
entire subgroup of targets with the entire defensive missile stock-
pile. In general, it is much easier to analyze defensive strategies
which assign missiles to individual targets; the outcomes of these
engagements do not depend upon the order of arrival of offensive
weapons. Strategies allocating weapons and missiles to individual
targets are called preallocation strategies, and will be considered
in the first pa:t of this chapter.

SPREVIOUS PAGE
IS BLANK
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4.1 PRELIMINARIES CONCERNING PREALLOCATION

STRATEGIES

Sections 4.1 through 4.3 discuss the properties of prealloca-
tion strategies. The present section concerns itself with the basic
ideas behind preallocation strategies, and will lay out the assump-
tions and notation that will be used. However, some of the assump-
tions and much of the notation will also be employed in later
sections dealing with other types of strategy.

Some comments on the rationale behind preallocation strat-
egies are in order here. The fact that such strategies are easier
to analyze has already been noted. Despite the fact that prealloca-
tion strategies are notationally formidable, they represent effec-
tively computable exact solutions of reasonably realistic problems;
this is in general not true for most of the later results in this
chapter.

A more important advantage of preallocation strategies,
however, is that in many cases they are more effective for the de-
fense than other strategies. Suppose that the defense uses the
simple strategy of firing at each arriving weapon until his stock-
pile is exhausted. Suppose that the offensive stockpile substantially
outnumbers that of the defense, a common situation. Then the
offense can first send in a force of weapons equal to thc dcfcnsive
stockpile, and then attack the targets with the knowledge that they
will not be defended any more. The use of a preallocation defense
precludes this. In Section 4.4, a number of defenses will be con-
sidered which are intermediate between the above simple strategy
and a preallocation strategy. In general, for the values of the
parameters selected, these perform worse than the best prealloca-
tion strategy.

However, the reader is cautioned against assuming that pre-
allocation defenses are always best. If the defense equals or out-
numbers the offense, and the defensive missile reliability is
reasonably high, the simple strategy given above will clearly out-
perform any preallocation strategy.

All targets are assumed to be identical (that is, each target
has the same value to the offense and defense); this assumption is
removed in the next chapter. The targets are located sufficiently
far apart so that an offensive weapon which destroys one target
does not affect any other target.

With brief exceptions (which will be noted when they occur),
all missile engagements are one-on-one; that is, at most one de-
fensive missile is assigned to each offensive weapon. This
assumption is justified if the defensive missile reliability is quite
high.

The criterion of effectiveness is E(f), the expected fraction
of targets saved; the defense selects strategies which maximize
this quantity, and the offense selects strategies which minimize
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this quantity. If a target is defended by i defensive missiles and
has j offensive weapons preallocated to it, the probability of target
survival is given by

nqmin(il j) qiax(O0 j-.i) •
Pr(target survives) =

where
q= Pr(target survives attack by single intercepted weapon)

- 1- p + = 1 - p(1-p)
qo Pr(target survives attack by single unintercepted

weapon)
1 -p .

It is assumed that both the offense and the defense know the target
kill probability p and the defensive missile reliability (kill prob-
ability) . This implies that the offense knows the hardness of each
target (assumed to be the same for all), and the defense knows the
offensive weapon yield and accuracy (assumed to be the same for
all).

The expected fraction of targets saved, E(f), is given by the
summation of Pr(target survives) over all the targets.

The number of offensive weapons available per target is de-
noted by a. and the number of defensive missiles available per tar-
get is denoted by d. Each side is assumed to know the value of
both a and d. the validity of the assumptions about a may be
doubtful if there are two or more regions containing targets, each
region having its own defense. Although it appears plausible that
the offense can know the defense stockpiles, it is not at all clear in
practice that the defense will know what fraction of the (possibly
much larger) offense stockpile will be assigned to a given group of
targets.

This assumption may be somewhat more palatable if recast
in the following form. It is possible that the defense can specify a
"maximum tolerable damage level" to the group of targets - that
is, lower damage levels can be endured but higher levels czmnot.
The defense then will plan his defensive strategy under the assumnp-
tion that the enemy has a stockpile just large enough to impose the
maximum tolerable damage level upon the defense if both use opti-
mum strategies. If, in reality, the enemy has a larger stockpile,
the defensive strategy will not be optinmum and the enemy will im-
pose a larger-than-necessary damage upon the defense: but this
will not matter, because the targets would have been intolerably
damaged no matter what the defense could do. On the other hand,
if the enemy has a smaller stockpile, the defensive strategy will
again be nonoptimum and the enemy will again impose a larger-
than-necessary damage upon the defense; but this damage level
will still be a tolerable one.
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Another way of getting around the problem of defensive
knowledge of the enemy stockpile is to reformulaie the criterion of
effectiveness. The defense can design a strategy such that his ex-
pected loss is insensitive to enemy attack size, that is, such that

1 - E(f) = ka

Of course, the value of k will depend upon the number of defensive
missiles available. Beyond a certain value of a, the expected
fraction of targets destroyed will fall below ka, and as a goes to
infinity the expected fraction will approach unity.

If T is not too small, it is reasonable to specify the offense A

and defense strategies in terms of strategy levels involving con-
tinuous variables. Offensive strategy levels are specified by the A
vector y (y0 ,YlY 2 ,. . .), where Y denotes the fraction of the tar-
gets in the group which are assigned i offensive weapons eachi.
Similarly, defensive strategy levels are specified by the vector
x = (x 0 ,xl,x 2 ,...). Note that the xi and yi are constrained by the

equations

A

i i

Those preallocation strategies may not be realizable because of
the finite number of targets in the group. If T targets are present,
the xi and yi can be reasonably approximated by fractions of the

form k/T, k = 0,.. .,T. However, if T is very small (say, ten or
less), it may be advisable to work out the offensive and defensive
strategy levels by formulating the problem as a matrix game and
solving it by the usual techniques of game theory. Throughout
most of this chapter, the difficulty of realizing strategies based on
continuous variables in terms of integers will be ignored.

4.2 OFFENSE -LAST-MOVE AND DEFENSE -LAST-MOVE

STRATEGIES
Assume that preallocation strategies are to be used, and

that the defense can carry out attack evaluation but not damage
assessment. Assume also that both the defense and the offense
know a, d, q 0 and q1 . To simplify the problem, assume that a and

d are both integers. One can readily derive upper and lower
bounds for the expected fraction of targets saved, assuming that
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A
71A

the offense and defense both act rationally. The lower bok:'d is
achieved when the offense can see the defensive allocation of mis-
siles to targets before making his own allocation (defense-last-
move). These bounds can be expressed mathematically as follows:

Upper bound: min max E(f)
' x

Lower bound: max min E(f)
x y

where the maxima and minima are taken over all possible defense 1
and offense preallocation strategies. It si. -ad be noted that if one
side has the last move, the distinction between preallocation and
nonpreallocation strategies for that side is lost.

If the offense can see the defense allocation before choosing
his own, it is not difficult to determine that the best possible de-
fense strategy is to allocate an equal number of missiles to each
target (xd = 1). What is the optimal offense strategy against this
defense? Let the offense attack a fraction of the targets = a; k
with k weapons apiece, k L a, and let yo = 1 - (k/a): that is, the
remaining targets are unattacked. Let P(k) denote the probability
of destruction of a target attacked by k weapons and defended by d
missiles. The average return per weapon at an attacked target can
be defined as X = P(k)j/k, and the expected fraction of targets de-
stroyed is 1 - E(f) = ykP(k) = aX. Assume that P(k) is a function
for which a unique value of k, denoted by k*, maximizes X:

X* = max , Xzk*i
k k*

It is obvious that if k* - a, the offense allocation which maximizes
X also maximizes 1 - E(f). Otherwise, Ya = 1 (attack all targets
with a -"- ,ons apiece) is the optimal offense strategy. In short,
I - E(f, = X*a, 0 <a k*; 1 - E(f) = P(a), k* • a.

For the one-on-one defense assumed generally throughout
this chapter,

P(k) =qin(dk) max(O,k-d)

However, the argument presented above can be extended to other
situations, for example salvo defenses. A few practical comments
may be in order here. The value k* can be found graphically by
constructing a tangent to P(k) passing through the origin; that is,
X is the slope of a line passing through (0,0) and (k,P(k)). The
maximum X corresponds to that value of k closest to the tangent.
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Note that if P(k) is continuous, then at the tangent point the margi-
nal and average returns are equal: dP(k)/dk = Pik.

So far an attack against targets in a single module has been
considered. This technique can be extended to allocations of
weapons to non-overlapping modules of targets by making P(k) the
expected fraction of a module that is destroyed if k weapons are
allocated to the module, and the offense and defense strategies
within the module are known. It is useful for defense design pur-
poses because given a tolerable level of destruction, E*, and
offense stockpile per module, a, the defense designer need only
assure that the function P(M-) does not pass through a line from the
origin with slope E*,/a. This is, however, only a sufficient, not
necessary, condition: a more general condition is that P(k) cannot
be more than tangent to any line through (a,E*) with slope less than
or equal to E*ja. Otherwise, the offense can achieve a payoff per
weapon greater than E* 'a by an attack at two (or nmore) leveiZ.

Another sort of offense-last-move case will be considerei,
where the model is an "attacker-oriented" one.

If the defense can see the offense allocation before choosing
his owii, it is not difficult to determine that the best possible offense
strategy is to allocate an equal number of weapons to each target
(ya =1). If d _- a, the maximizing defense strategy is obvious:

attack each weapon with a single missile. (Only one-on-one en-
gagements are permitted in this section.) Therefore, it is neces- 2i
sary to derive the defense strategy only for d -. a. It is not difficult
to show that the maximizing defense strategy is
(x0 = (a-d)/a, Xa = d'a) and the corresponding expected fraction of
targets saved is

E(f) a- d a d a
-- q0 + ql
a q0 -aI

Assume that the attack size, a, is not known to the defense.
If the offense has the last move, how should the defense be allo-
cated so that I - E(f) = ka for 0 _ a-> a0 ? If ql = 1 and q0 = 0, the
answer is easy: allocate the same number of missiles to each tar-
get. The offense will attack targets with (d + 1) weapons apiece
until his stockpile is exhausted; 1 - E(f) = a/(d+1), 0 - a 5 d+ 1.
However, for arbitrary q, and q0 the answer to this problem is not
known.

4.3 STRATEGIES WHEN NEITHER SIDE KNOWS THE OTHER'S

AL LOCATION
Assume, as before, that preallocation strategies are to be

used, and that the defense can carry out attack evaluation but not
damage assessment. Assume also that both the offense and the
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defense know a, d, qo and q,. Assume that the offense allocates its

weapons and the defense allocates his missiles, each in ignorance
of the other's allocation. What allocations should each side select,
and what is tile expected fraction of targets saved corresponding to
these alloc itions?

This allocation problem can be formulated in terms of a
zero-sum two-person game. The payoff is the fraction of targets
saved, and the strategies of the two players consist of (1) a speci-
fication of the fractions of targets to be assigned given offense
levels (y 0 ,ylY 2 ,...) and defense levels (x0 ,xl,x2 ,...), satisfying

the constraints of Section 4.1, and (2) an assignment of individual
targets to these offense offense and defense levels. It is easily
seen that only a finite number of offense and defense levels are
reasonable. Then a generalization, due to Charnes (1953), of the
fundamental theorem of game theory states that the game has a
value, V, and that there exist optimum probability density functions
of defense and offense strategies. The optimum defense strategy
has the property that, if the defense selects a strategy accordingc
to this probability density function, then the offense cannot produce
an expected outcome less than V, no matter what strategy he
selects. Similarly, the optimum offense strategy has the property
that, if the offPnse selects a strategv according to this probability
density function, then the defense cannot achieve an expected pay-
off greater than V, no matter what strategy he selects. In short,
the defense can select a strategy which guarantees that the expected
fraction of targets saved is at least V, and the offense can select a
strategy which guarantees that the expected fraction of targets
saved is aL most V, the value of the game. One can further prove
that

max rmin E(f) = V = rmin minx E(f)
x V y X

as might be expected.

The probability density function of offense strategies which
guarantees an expqected payoff of at most V can be expressed in a
simple form: select a fraction y0 of the targets at random for no

attack, select a fraction yl of the targets at random for attack by
one weapon, and so on. The probability density function of defense
strategies which guarantees an expected payoff of at least V can be
similarly expressed. In other words, the solution to the allocation
problem consists of finding the vectors (Y.y0,.ly 2 , .. ') and

(x 0 ,xl,x 2 ,...)" the expected fraction o! targets saved is then

V = a .q in(i ,j) q*x(O,i -i)V xiy jql QO
1,]
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4.3.1 An Explicit Solution to the Preallocation Problem
This problem can be expressed as a constrained game: such

games can be solved by linear programming, as has been shown by
Charnes (1953). The possibility of using linear programming will
be discussed ill Section 4.3.4. However, Matheson (1967) has found
a solution to the preallocation problem which does not use linear
programming explicitly.

The results of Matheson's work are summarized in the fol-
lowing paragraphs. Unfortunately, the solution is relatively diffi-.
cult to characterize in a concise form: those wishing to use it will
find a digital computer almost indispensable.

Matheson proves that the solution can he based on partition-
ing the positive quadrant of the (a,d)-plane into regions that are
rectangrular or are infinite rectangular strips with boundaries de-
pendent on p and p, or, equivalently, on q0 and q1 . The regions are
of four typos, each having a special form of offense and defense
strategy associated with it. Thus, the first problem is to identify
in what region (a,d) is located. This is accomplished by means of
the table on the next page giving the boundary-values of the various
regions. These boundary-values are denoted by tt rims of the form
Dipx,y) 'T and A(x,y)i'T, respectively, and are terlied critical de-
fense and critical offense levels by Matheson. (The reader is
warned that Matheson's notation has been considerably altered.)
The various critical values are defined below:

(m-h)e(n,,h). h_ 1 I-+h 1 l-ql
Dl(mn-l,h),'T = -i 1 1q

pq1

D2 (h+w,h'1 'T (h-i) + DI(I +w,1) DT

D3 (h-+N:,h)/T z hi + D1 (w,1) T

A(m-1 ,h)iT = h b(nm,h)(tn-h-1) 1 + l-0m-h- 2

m- 2 q I -c 0  1-q 1

where

h-i
Pjqo

e(ni,h) +p +

P/Ip + (mn-h)(p - 1 + (q0 'ql)h-l
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b(m,h) 1S/1-qo) l-q m- - A
h + )
1 1 0

anid w is the largest integer less than p,,p(1-p).-
Once the region in which (a,d) is located has been deter-

mined from the above relationships, the values of m - 1 and h are
uniquely specified. It is then necessary to determine corresponding
values of L and g using the table below:

Region
Type

I m-1=4, h-1= g
fl[ Ill= , h =g

III I-II h =g

IV h

Knowing and g, one can now specify the offense and delense
strategies and the expected fraction of targets saved. The offense
and defense strategies are obtained by linear interpolation between
critical strategies. The appropriate critical strategies are deter-
mined by noting the form of the critical defense and offense levels
bounding the region in which (a,d) lies - these levels it will be
recalled are of the form Dl(x,y)/T, D2 (x,y)/T, D3 (x,y)./T and
A(x,y) 1/7.

Critical Defense Strategy Corresponding to D,(m-l,h)i'T:

(in-h)e(m,h)
0 h-1

pql

e(m,h) (m-ip m-i i
Xl, .. ?...y -j~ for i h,. .,rn-1

\% ql

Critical Defense Strategy Corresponding to D2 (h+Nkw,h) /T:

x 1 - 1 -p(1-p}/p
hql

1-(i-h)p(1-p)"p 1-(i-h±1)p(1-ip for i -h+l, .. ,h+w-1
=i-h i-h+lql ql
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Critical Defense Strategy Corresponding to D3 (h+w,h)/T:

w= h pkw ,7

x 1 fw-i+h+l w-i+h for i=h+ .
x p(w+1/p) i-h-1 i-h /

Critical Offense Strategy Corresponding to A(t,g):

-g1bQg •--q-q) + 1for i - g+1,..,-
q 1 1-ql f

Yi= b( ,g)

These strategies can be substituted into the equation for V,
the expected fraction of targets saved; the result is algebraically
cumbersome and is omitted here.

4.3.2 A Simplified Problem: Perfect Offensive Weapons and

Defensive Missiles

If ql is set equal to 1 and q0 is set equal to 0, the offense and

defense strategies are much simpler to specify. Following Mathe-
son (1966), it is possible to write down the offense and defense
strategies directly as functions of a and d, instead of the auxiliary
quantities g, h, .t, and m. Instead of four regions in the (a,d) -plane
corresponding to rectangle types 1, 11, 111 and IV, there are only
two:

Offense dominant (Type II) if [2d+lI .< 2a ,

Defense dominant (Type I) if [2d+ll- [2a]

If the defense is dominant, then

'I
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Defense Strategy:

x 2(=2d+2i-d) for i 0,1,2,. .. ,[2d]
_2d - f2d]

X[2d4l] [2d+2]

Offense Strategy:
2ai[2d+1[2d+2] for i 1,2,.. .,[2d+1I

- 2aY0  1 -[-2d+2

The expected fraction of targets saved is

V = 1 - 2a([2d+l]-d)
[2d+1I[2d+21

when d is an integer, the expected fraction of targets saved is
equalto 1 - a/(1+2d). If the offense is dominant, then

Defense Strategy:

2dx for i = 1,2,...,[2a-1]
[2a][2a-1]

x= 2d

0 2a]

Offense Strategy:

Yi -2([2al-a) for i= 1,2,...,[2a-1][2a][2a-1]

2a - [2a)
Y[2a]= [2a]

The expected fraction of targets saved is

V 2d (1 a
V[2a--11"2a

= When a is an integer, the expected fraction of targets saved is
equal to d/(2a-1).
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Assume that the attack size, a, is not known to the defense:
how should the defense allocate his missiles so that the expected
fraction of targets lost is proportional to the actual attack size?
This criterion of effectiveness can be easily achieved for certain
defense levels d: find that (d,a) pair corresponding to (m,l), _

where m is an integer. In effect, one assumes a certain offense
level and defends in an optimum way against this offense. When q,
is equal to one and q0 equal to zero, the defense and offense strat-

egies corresponding to an offense-dominant attack satisfy the cri-

te rion:]
E(fraction of targets lost) = 2a([2d+l] -d)

[2d+ll[2d+2] "

4.3.3 Arriving at Integral Allocations

The preceding two sections have specified the Matheson
offense and defense strategies in closed form. It is important to
realize that the specification of the Matheson strategies, from the
standpoint of actually assigning missiles (or weapons) to targets, t
is not complete. All that the Matheson defense strategy does is Ispecify that a randomly chosen fraction x. of the targets will be A

assigned zero missiles, a randomly chosen fraction x1 of the tar- A

gets will be assigned one missile, and so on. Since the number of
targets, T, is finite, there is no guarantee that these fractions can
be achieved by any real assignments. As a working rule, one can A
select fractions as close as possible to (x0 ,xl,...,Xm _1) and

(y0,Yl,... ym) and assume that the expected fraction of targets is
well-approximated by the Matheson game value E(f). In Section
4.3.5 it will be seen that this assumption is reasonable.

However, one can sometimes do more than this. To be spe-
cific, one can define an integer strategy game analogous to the
Matheson game, in which the mixed strategy used by the defense
(or the offense) is a probability distribution function (pl, P2, "'"PN)

taken over the N different pure strategies (the actual assignment of
an integral number of missiles to each of the T targets). This in-
teger strategy game is impossible to solve in closed form except
for extremely small numbers of missiles, weapons and targets be-
cause the number of pure strategies (that is, the number of ways D
(or A) objects can be partitioned among T cells) quickly becomes
very large. Matheson was unable to obtain a general formula for
the strategies in terms of A, D, T, q0 and ql; instead, as has been
seen, he defined the Matheson game by enlarging the space of mixed
strategies to include all strategies of the form (x 0 ,xl,...,xm_1)
realizable under stockpile constraints, not just those realizable
from the N pure strategies.
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One can prove that for perfect offensive weapons and defen-
sive missiles (q0 = 0,q, = 1), the value of the Matheson game is the
same as the value of the integer strategy game. (In other words,
that the optimum can always he realized in terms of the N pure
strategies.) This result does not hold for imperfect weapons and
missiles, since it is possible to construct examples in which it is
impossible to find a mixed strategy in the integer strategy game
satisfying the requirements of the optimum strategy in the Mathe-
son game. However, the number of pure strategies (and therefore
the variety of mixed strategies) in the integer strategy game in-
creases so rapidly with T that it has been conjectured that for
T -> 1 I it is always possible to find a mixed strategy satisfying the
requirements of the Matheson strategy. This conjecture seems
unlikely; but in any case, when T is large there should always
exist a mixed strategy which comes very close. Even if an exact
solution exists, it may not be easy to find such a mixed strategy by
trial-and-error methods. There exist possible systematic methods
for doing this; for instance, linear programming can be used.
However, it does not appear that any attempt has been made to
assess the computational feasibility of such methods.

If D (or A) and T are not too large, it is possible to find the
optimum offensive and defensive strategies for the integer strategy
game by means of the well-known techniques of linear program-
ming - that is, by maximizing a linear function of several unknowns
which are also subject to a finite number of linear constraints.
This, of course, does not yield a general formula for the strategies
in terms of the unknowns T, D, A, q0 and q1 . nevertheless, in view
of the extreme complexity of the formulas in Section 4.3.1, this is
usually not much of a disadvantage. However, in many situations
it takes too long to obtain a solution by linear programming even
using an electronic computer. It appears that the maximum feasi-
ble (DT) is of the order of (25,10).

4.3.4 Generalization of the Preallocation Problem
The Matheson game can be treated as a constrained game,

and can be solved easily by linear programming, using a result of
Charnes (1953). Linear programming can be applied straightfor-
wardly to solve various generalizations which Matheson did not
consider, some of which are given below:

(1) It may be necessary to limit the maximum number of
defensive missiles or offensive weapons assigned to any
target because of radar traffic-handling limitations or
interceptor-attacker geometry.

(2) The defensive missile and offensive weapon assignment
doctrines need not be one-on-one. For example, if
doctrine i is to be used at a target, one intercepts the
first weapon with Dil missiles, the second weapon with
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Di 2 missiles, and so on. The sequence (DilDi2,. de-
fines the ith doctrine. Presumably, Dij • Dik for j < k;

also, D D. The second defensive constraint at

the end of Section 4.1 becomes d = • D x. Other prob-i

lems that can be dealt with include decoys, shoot-look-
shoot, etc.

(3) One can easily handle allocation problems in which there
are several different types of defensive missiles (or
offensive weapons), each with its own stockpile size and
reliability.

(4) Suppose that the defense must protect several different
modules, which are located so far apart that the missile
stockpile for one module cannot be used for the defense
of any other module. Linear programming techniques
can be used to find the optimum between-module and
within-module allocations. One can also derive a method
based on dynamic programming for determining the value
of each of the within-module Matheson games (regarded
as a function of Ai, the number of offensive weapons AA

allocated that module).
As a more complicated example, consider generalized shoot-

look-shoot strategies:

(i) Launch defensive missiles one at a time, observing after
each launch whether or not the missile has destroyed the
weapon it was directed against. Continue until one of the
following events occur:
(a) the weapon is destroyed,
(b) the missile supply assigned to that target is ex- ]

hausted,

(c) b defensive missiles have been launched.
(2) If the weapon survives b defensive missile launches,

launch a final salvo of c defensive missiles (or, the
remaining missile supply, if it is less than c).

Let f(ij) be the probability that a target survives if i weapons and
missiles are allocated to the target and the generalized shoot-

look-shoot strategy (b,c) is used. This can be iteratively calculated
using the following equation:

f(ij) = ( -(i-l,j-k 1)+(1-p)u 1-(1 f(i-l j-u-v) ,

k=O A
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where u = min(b,j) and v = max(c,j-u). Note that

f(0,j) = 1 for all j

and

f(i,Q) = (l-p) for all i

If b = 1, c = 0, this defensive strategy becomes merely a one-on-one
defensive strategy. If b = c = 1, the standard shoot-look-shoot de-
fensive strategy results

This generalized problem can be solved by linear program-
ming very easily. If, however, it is desired to apply Matheson's
solution to approximate the solution of this shoot-look-shoot prob-
lem, there are at least two ways of doing this:

(1) E1 (f) - assume that the offense allocates weapons to

targets according to the Matheson game and the defense,
observing this allocation, selects the best possible de-
fensive allocation of missiles to targets using a general-
ized shoot-look-shoot strategy;

(2) E2(f) - assume that the defense allocates missiles to

targets according to the strategy above, but the offense,
observing this allocation, selects the best possible
allocation of weapons to targets.

If EI(f) and E 2 (f) are close together, these allocations should be

close to the optimum allocations when each side is ignorant of the
other's allocation.

4.3.5 The Variation in the Number of Targets Surviving in a

Matheson Game

The Matheson game provides the missile defense analyst with
the expected number of targets destroyed if both the offense and de-
fense use their optimum mixed strategies to allocate their weapons
and missiles. It is frequently of great importance to know the
variability that may be expected in an actual engagement - if the
expectation is that 35 out of 50 targets will be destroyed, what is
the probability that (say) 25 or fewer targets will be destroyed?

In general this is a difficult problem, and analytic results
(other than upper bounds) are difficult to obtain. If both the offense
and the defense use pure strategies, one can calculate an upper
bound to the variance of the number of targets surviving the attack.
Specifically, set Z. equal to 1 if target i survives, and 0 if target

i
i is destroyed; then
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var Z) - T--I V(I-V)\i)l

-where V, as before, is the expected fraction of targets saved. Note
that if the random variables were independent (which clearly they
are not in the Matheson game), then ZZi would be a binomial ran-

dora variable with variance TV(1-V). It is rather surprising that
the actual variance is bounded above by an amount which differs
(in percentage terms) very slightly from the binomial value. It is
gratifying to note that the variance bound depends only on the ex-
pected fraction of targets surviving, not on the actual offensive
weapon and defensive missile allocations.

If Z is a positive random variabin with E(Z) = [ and
2var(Z) a , a form of the Chebychev inequality states that

Probability (Z Ž t) U- - 2 for t - 1,L

2 + W-0 2

This may be used to set bounds on the probability thai the actual
number of surviving targets is greater than a preset value t above
the mean (or less than a preset value t below the mean):

T T2V(1-V)/(T-1)
i_- T 2 V(1-V)/(T-1) + (t-TV) 2  t TV

""r 0 T2 V(l-V)..(T-1) 2 t TV
T 2 V(1-V)/(T-1) + (TV-t)2

One should note, however, that Chebychev-type bounds are not
very strong.

One can prove that the above arguments are also valid when
the offense uses an optimum mixed strategy for allocation and the
defense uses an optimum allocation strategy which happens to be
pure. Unfortunately, it appears very difficult to prove the corre-
sponding theorem when the optimum allocation strategies for both
sides are mixed - a much more realistic case. To get around this
difficulty, one can introduce the concept of an approximating pure
defense strategy - one which is obtained from the real-valued
Matheson allocation (xoXl,. .,X m_) by a method which essentially

involves rounding up or down to the nearest integer.

3=
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First derivc an upper bound on the loss (the reduction in theI

expected fraction of targets saved) incurred by the defense when it
uses an approximating pure strategy instead of the optimum mixed
strategy determined by the Matheson game. If Ai is the difference

between x. and the integer approximating xi, and V and V* are the

respective expected fractions of targets lost using the mixed defense
strategy and the approximating pure defense strategy, then the bound
is simply m-1

IV -V* I -z: i=n _ 2

2T

In most cases, this difference is very small. For example, the
optimum defense strategy (9.60, 9.65, 10.55, 11.65, 8.55)associated
with the Matheson game for T = 50, A = D = 100, q0 = 0.1 and

q= 0.955 leads to thc approximating pure strategy (9, 10, 11, 12, 8).

For this pair, the difference 8- is about 0.001.

Using this bound, one can modify the Chebvchev bound (given
2 =72earlier) by replacing a T V(1-V),/(T-1) with

o2= T2V(1-V)/(T-1) + T2(52-(V*-V)2).

One can also give a strong plausibility argument that, if both
the offense and defense use pure strategies, then, as the number of
targets approaches infinity, the probability distribution function of
the number saved converges (in a carefully defined sense) to a
Gaussian distribution. More specifically,

lim Pr( Z VT N(O,a 2 ) and 2 1
T TV(I-V) t)

2where N(0,u ) denotes the Gaussian distribution with zero mean and
variance 02 . A strong argument can be made (supported by Monte
Carlo simulation results) that this statement also applies when the
offense uses an optimal mixed strategy and the defense an approxi-
mately optimal pure strategy as discussed earlier.

The use of a Gaussian limiting distribution enables one to
make more accurate estimates of the probability that the number
of surviving targets is less than (or greater than) a preset value t.
However, the estimated probability may be either high or low,
whereas the corresponding probability calculated from the Cheby-
chev inequality is guaranteed to be an upper bound. To illustrate
the difference, consider again the Matheson game with parameters
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T = 50, A = D = 100, q0 = 0.1 and q1 = 0.955, for which V = 0.582 or

about 29 targets. hi this game, the Chebychev bound leads to the
statement that Pr('-Zi -- 19) -- 0.108., whereas the Gaussian limiting

distribution leads to Pr(Ž_'Z. 24.5) - 0.093.

4.3.6 Other Models of Preallocation Offense and Defense
Matheson has provided the most comprehensive description A

of the optimum offensive and defensive strategies required when
neither side knows the other's allocation. However, it is worth
noting that other analysts have also studied this allocation problem.
In the literature, this allocation problem is frequently labeled a
"Blotto game" or a 'Colonel Blotto game"; apparently this name
was introduced by Caliban (a pseudonym of the English puzzle-
constructor Hubert Phillips) in his Weekend Problems Book.
Blackett (1954) solves a simple Blotto game in a logistis- context.
Translated into a missile allocation problem, the defens.e con- -:
structs one real target and (T-1) dummy targets, and the offense, ]not knowing which target is real, distributes A weapons among
these T targets.

Blotto games can be formulated in two different ways. A
Matheson considered a discrete Blotto game in which the offense
and defense levels ailocated to the various targets were restricted
to integer values. However, one can consider continuous Blotto
games in which this requirement is relaxed: at each target,
weapons and missiles are represented by real numbers. Continu-
ous Blotto games are analytically more tractable but rather more
difficult to interpret. For example, how much damage is done to a
target attacked by 3.72 weapons and defended by 1.17 missiles?
Usually, q0 is set equal to zero and ql is set equal to unity: the
target is assumed to be saved if the number of missiles allocated
to it is greater than or equal to the number of weapons, and de-
stroyed if the number of missiles allocated to it is less than the
number of weapons. According to Luce and Raiffa (1957), Borel
posed a problem of this type for three targets in 1921.

Galiano (1967b) and Penn (1971) independently derive Mathe-
son's optimum offense and defense allocations for the discrete
Blotto game when q0 = 0 and q, = 1. In addition, they derive the

corresponding allocations and the expected fraction of targets saved
in the continuous Blotto game when q0 = 0 and ql = 1. If the offense

is dominant (a -" d), then he attacks a typical target with ai weapons,
where ai is a real number selected according to the uniform prob-

12
ability density function between 0 and 2a. The defense defends a
typical target with probitbility d. a: if defended, a target is allocated
di missiles, where di is a real number selected according to the

uniform probability density function between 0 and 2a. The
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expected fraction of targets saved is E(f) = di2a. If the defense is
dominant (a : d), then he defends a typical target with d. missiles,

where d. is a real number selected according to the uniform prob-

ability density function betwein 0 and 2d. The offense attacks a
typical target with probability ad; if attacked, a target is allocated
ai weapons, where ai is a real number selected according to the

uniform probability density function between 0 and 2d. The expected
fraction of targets saved is 1 - a/2d.

Schreiber (1968) calculates some additional quantities of in-
terest for the continuous Blotto game when q0 = 0 and ql = 1. The

expected number of unused defensive missiles per target defended
is equal to d/3 (when a !: d) and d - 2a/3 (when a ci). The expectec
number of unintercepted weapons per tar;ct is d - 2a.'3 (when
a - d) and a/3 (when a--' d).

Galiano (1969) suggests thiat the continuous Blotto game can
Also be used when the probability of target destruction by an unin-
tecrceptc ! weapon is not unity but p. The expected target damage
can be approximated by increasing the number of defensive missiles
per target from d to d - 1/log e(1-p), and using the results cited
above.e

Note that the continuous Blotto game is biased in favor of the
offense- the offense can destroy a target with an infinitesimal ex-
cess of weapons over missiles. Penn (1967b) points out the dis-
crete and continuous Blotto games can be made comparable to each
other if, in the discrete game, one-half of the target is awarded to
the offense when the number of weapons is equal to the number of
missiles. Curiously, the optimum strategies that Penn derives
shun ties - the offense always allocates an odd number of weapons
and the defense frequently allocates an even number of missiles.

Schreiber (1968) derives the general form of the optimumn
offense and defense strategies for the continuous Blotto game with
one-on-one engagements, assuming a broad class of damage func-
tions. Specifically, he assumes that P(x,y), the probability that a
target survives when attacked by y weapons and defended by x
missiles, is of the form

P(x,y) =s(y) 0 -yi x

P(x,y) = s(x)t(y-x) x V

The functions s(x) and t(y) are assumed to be convex with continu-
ous derivatives, and s(0) = t(0) = 1. Therefore, P(x,y) is continuous
in x and y, but dP(x,y) 'dy is discontinuous at x = y. At the begin-

ning of this chapter, s(y) was assumed to be q0 and t(y-x) was
V-x

assumed to be q I

i I
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Let f(y)dv be the fraction of targets attacked by y weapons,
and g(x)dx the fraction of targets defended by x missiles. These
functions define offensive and defensive strategies (analogous to
the x and v. used by Matheson)' they are in general discontinuous

and contain delta-functions. Schreiber shows that that the optimum
defense strategy is given by g(x) satisfying the equation

G(y) f (x)P(x,v)dx m .- l

0

in some interval U .: y- V subject to the constraints G(v) m - hy
outside U V,

g (x) dx I and x L, W dx =d

The quantities m, h, U and V are determined so that m - ha is as
large as possible. The corresponding optimum offense strategy is
given by f(y) satisfying the equation

F(xý f f(y)P(x,y)dv = n + kx

0

in some interval U' -'< x V subject to the constraints F(x) - n + kx

outside U' -- x < V',

f(y)dy = 1 and yf f(y)dy = a

0 0

The quantities n, k, U' and V' are determined so that n + kd is as
small as possible.

Schreiber demonstrates that U = U' and V V'. In addition,
he shows that

g(x) = ,X(x-0) + (,-4)(X)

where 6(x-x 0 ) is the unit delta-function at x = x., 0 -- X - 1, and

o(x) '- 0 for U -I x --K V, o(x) = 0 elsewhere, contains no delta-
functions and integrates to unity. Finally, he shows that

f(y) = uI(y-U) + A6(y-V) + (1-/i-V)O(y)
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where 0> 1,0 1, l, andb0(y) 0Ofor U yt V,bO(y)=0
elsewhere and 6(v) contains no delta-functions and integrates to
unity. Note that the optimunm defense strategy can be realized no
matier what the value of d. but the optimum offense strategy is im-
possible to realize unless a > U. When a --_ U, the optimum offense
strategy depends on s(y) alone, and must be derived by a special
argument.

The forms of thc optimum offense and defense strateg.i.es and
the value of U can be specified in slightly greater detail by noting
in which of four disjoint regions (d,a) is located:

1) a y d ' U (super stable defense)
2) a v . U d x (strong stable defense)
3) a $ v, d x (weak stable defense)
4) d x (unstable defense)

where x and v are critical values which can be calculated from

the optimum strate.gies.

4.4 SOME NONPREALLOCATION STRATEGIES

When neither side kinows the other's allocation, it is clear
from the preceding section that the optimum offensive and defensive
preallocation strategies are not easy to derive. This is not a par-
ticularly serious objection to their use, since they ran be calculated
well in advance of the actual attack. However, another difficulty I
can occur. It may not be possible to determine the aiming-point of
a weapon accurately enough to decide what its target is. Prealloca-
tion defenses require that the defense keep track of exactly how
many offensive weapons have been directed at each target and were
engaged in order to decide whether or not to allocate a defensive I
missile against the next weapon approaching that target. Is it pos-
sible that there exist strategies which are nearly as good as (or
better than) the Matheson preallocation strategy but are much A
easier for the defense to implement?

4.4.1 A Group Preferential Defense Strategy Against an Offense

That Can Vary His Attack Size

One possible defense strategy is the following group prefer-
ential strategy. Allocate the entire stockpile to the defense of a
fraction d k of the targets where k is an integer greater than or
equal to d: when any target in this subset is attacked, defend it with
a missile as long as any remain in the stockpile. The subset of
targets to be defended is selected. ar random: however, there is
clearly a great advantage to selecting a geographicaly compact
subset in order to minimize the number of decisions that must be
made concerning the target against which each offensive weapon is -=
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direcfed. It is assumed that the offense knows the choice of k, but
not the actual random subset being defended. The word "preferen-
tial- has been apilied to a great many different types of strategy.
Indeed, most of the strategies of this chapter would fall under
somebody's definition of preferential strategies. For this reason,
the word has been avoided in this work, except in this section. It
should be noted, however, that preallocation strategies are perhaps
those the most frequently designated as preferential.

Unfortunately, it is quite difficult to make a direct compari- I
son between this: strategy and the Matheson preallocation strategy
in terms of the original model. The difficulty arises because it is I
now necessary to consider the order in which the offensive weapons
arrive. To get around this analytic difficulty, one can replace the I
actual attack with a hyp;othetical attack of somewhat greater sever-
ity and analyze the latter proOleem instead. In addition, onl:; integral
k will be permitted; this can be a severe restriction.

To be specific, assume that the offense attacks the group of
targets in "'waves," each consisting of a single weapon against each
target. Also assume that the offense attacks the targets with a '1
total of 1 different waves. The quantity i is a random variable
Nvith a probability density; function which can be selected by the
offense but which musi have a mean of a: .•lyi = a. In other words,

the offense attacks the entire set of targets with the same type of
strategy that he earlier used on individual targets in the set. Ob-
viously, this strategy is realistic only if the enemy has a huge
n'inber of equal groups of targets to attack, not just one.

It is iot too difficult to prove that the optimum offensive
strategy against this simple defense is not a multilevel strategy
such as Matheson's, but instead a strategy containing at most a
lower and an upper attack level, which are denoted by i and (a+j).
This is a consequence of the fact that the offense knows the defen-
sive parameter k. It is also net difficult to see that if the defensf -

uses a prnallocation strategy against this hypothetical attack, the
analysis of Matheson goes through exactly as before (in the limit
when the number of groups (if targets is large). Therefore, a com-
parison between the preallocation defense strategy and the group
preferential defense strategy proposed above remains valid.

The expected fraction of targets saved can be expressed in
the following terms:

a - ia d min(",k) 'ax•i -k)'k. iJ~V11

I- d (111ill~ -i'_
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where k, i and j are all integers, k d and 0 i a. (When j is
equal to zero and i is equal to a, the above formula must be modi-
fied slightly to avoid terms of the form 0/0.)

To illustrate the use of the above formula, consider a simple
example: let d = 1, a = 3, ql = 1 and q 0 - 2/3. First consider the

outcome of using techniques discussed in previous sections. From
Section 4.2.0, it is easy to see that the expected fraction of targets
saved when the offense has the last move is 4/9 = 0.444, and the ex-
pected fraction of targets saved when the defense has the last move

3is (1 3) + (2,'3)(2,`3) = 0.531; these represent upper and lower
bounds to the problem. If neither side knows the other's allocation
and preallocation strategies are used, so that Matheson's solution
applies, then the offense strategy is Yv Y2 = Y3  1 v 1 /2,

the defense strategy is x0 -1 1/2, x1 = x2 = x 3  1.'6, and the ex-

pected fraction of targets saved is 1,"2 = 0.500. Turning now to the
group preferential strategy being considered, one ,an determine
by trial and error that the expected fraction of targets saved is
equal to 239,'486 = 0.491, which corresponds to a choice of k equal
to 3 (that is, one-third of the targets defended) and i = 2, j = 1,
giving offensive levels of 4 and 2 each with a probability of 1/2. In
this example, the group preferential strategy is only slightly infer-
ior to the Mathcson strategy, and it may well be much easier to im-
plement. In other examples, the group preferential defense might
be superior to the Matheson strategy.

Intuitively it seems logical to set k = a if a is integral, be-
cause the defensive stockpile will then be equal to the expected
attack size on the defended subset. However, as d approaches a,
the advantages of randomization are lost; when the two are equal,
the offense knows the defense strategy. By allowing k to vary, an
additional degree of freedom is given the defense. Of course, if
d •" a, the best defense is to engage each weapon, abandoning the
group preferential defense.

What if the offense does not know the level k that the defense
has selected? In such a situation, a possible response of the
offense is to tailor his attack so that the expected fraction of tar-
gets saved is the same no matter which level, k, the defense se-
lects (over a range of values, say d - k - t). The offense can
easily achieve this goal by selecting the Matheson preallocation
strategy corresponding te d = h, t = i. It can be shown that when
ql = 1, the expected fraction of targets saved when the defense
selects a value of k such that d - k -< t and the offense uses a
Matheson strategy is:

E(f) d__
t(I-qd)+ dq
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The value of t is determined by the size of the offensive stockpile:

t
a = E yi

i=d

To illustrate this strategy, consider the following simple ex-
ample: let d =2, t = 4, ql = 1 and = 1/2. The strategy used by

the offense is y2 = 7/10, y3 = 2/10 and Y4 = 1/10, corresponding to

an overall offensive level, a, of 12/5. Since the attack level is
variable, the above strategy can only be implemented, even approx-
imately, when there are several independent groups ot targets. The
expected fraction of targets saved is equal to 4/7 = 0.573. However,
if one uses optimal (Matheson) preallocation defense and offense
strategies corresponding to d = 2, a = 12/5, q, = 1, and q0= 1'/2,
the offense and defense strategies are

Y0 = 7./25, Yl = Y2 = Y3 = Y4 = 3 /25, Y5 = 6 !"2 5

x0 =3/10, x1 =x 2 =x 3 = -3 =3/20, x5 =1/10

and the expected fraction of targets saved is increased to 0.640. In
other words, the defense has paid a price in effectiveness of 0.067
by using a group preferential strategy instead of a Matheson strat-
egy. In another example, the group preferential strategy might
actually be superior. Note that the defense should randomize its
choice of k in tUhe range d -s d -< t in order to prevent the offense
from taking advantage of a constant value of k.

4.4.2 A Group Preferential Defense Strategy Against an

Offense of Fixed Size

Can amy analysis be made of defensive area strategies when
the offense model of the beginning of this section holds - that is,
when the offense attacks a single group of targets with a stockpile
of fixed size? As mentioned earlier, the outcome depends upon
the orcder of arrival of offensive weapons. Consider two extreme
cases: (1) offensive weapons arrive at random; (2) the offense has
complete control over the order of arrival. Assume that each side
knows the other's stockpile size but not the specific allocation of
weapons to targets, or the specific subset of targets selected for
area defense. Assume also that ql = 1 and q 0 = 0 to simplify the
calculations.

The following numerical example may be instructive.
Assume that one has four targets which can be defended by five
missiles, and assume that the offense has ten weapons. Matheson
(1966) has worked out by combinatorial arguments the optimum

f I
, a a I I I I I ,
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offense and defense strategies and the expected fraction of targets
saved if both sides use preallocation strategies. The offense
randomly assigns (4,3,2,1) weapons; the defense randomiy assigns
(3,2,0,0) missiles with probability 2/"3, (3,1,1,0) missiles with
probability 1/6, and (1,2,1,1) missiles with probability 1;.6: the
expected fraction of targets saved is 5/16, or 0.3125. This result
will be compared with the outcomes of offense models (1) and (2)
above.

If the offense has complete control over the order of weapon
arrival, the best thing for him to do is to arrange matters so that
the last four weapons are allocated one each to the four targets. If
at least five or his first six weapons all happen to be directed at
targets in the defended subset, then the offense will destroy the en-
tire set of targets. Since he does not know which targets are being
defended, he will not ordinarily be this fortunate. In this example,
all possibilities can be enumerated with relative ease.

For example, assume the offense attacks the four targets A
with (4,2,2,2) weapons. There are six equiprobable ways in which I
the defense can select two targets to be defended. If a (4,2) pair L
is selected, the offense causes the defense to use four defensive
missiles against the first six offensive weapons, and the fifth de-
fensive missile can be used to save one target. If a (2,2) pair is
selected, the offense causes the defense to use only two defensive
missiles against the first six offensive weapons, and thc rcmaining
three defensive missiles can be used to save both targets (and have
one defensive missile left over). Note that the two undefended tar-
gets are always destroyed by the offense. The expected fraction of
surviving targets is, then, (1/2)(1.'4) + (1/2)(1'2) = 3/8. The vari-
ous possibilities are summarized in the table below.

EXPECTED FRACTION OF TARGETS SAVED

(Controlled Offensive Arrival Order)

Offense Number of Targets Defended
Strategy 1 2 3

(3,3,3,2) 0.250 0.458 0.125
3,3,3,1 0.250 0.375 0.188
4,3,2,1 0.250 0.375 0.188
4,2,2,) 0.250 0.375 0.125

4,4,1,1) 0.250 0.417 0.250
5,2,2,1) 0.250 0.292 0.188
5,3,1,1) 0.250 0.333 0.250

(6,2,1,1) 0.188 0.250 0.188
77,1,1,1) 0.188 0.250 0.188

The best strategy for the defense is to defend two targets so the
best strategy for the offense is either (6,2,1,1) or (7,1,1,1) - he
can insure that the expected fraction of surviving targets is at most

r½

I_
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0.250 no matter what size subset the defense selects. (If the de- A
fense selects either one or three targets to defend, the offense can
actually do better.) In other words, if the offense can control the
arrival order of this weapon the defense loses 0.062 by shifting
from a preallocation to a group preferential strategy.

Note, however, that the optimum offense strategy is ex-
tremely unbalanced. If the defense were to shift to a preallocation
defense using (2,2,2,2), it would be a disaster for the offense - at
least three-quarters of the targets would be saved every time. -.
Therefore, the offense dares not use the strategy (7,1,1,1) or
(6,2,1,1) unless he is certain that the defense is using a group
preferential strategy. If the offense conservatively uses (4,3,2,1), I
then the best group preferential strategy yields an expected frac-
tion of targets saved of 0.37 5 - considerably better than a preallo-
cation strategy. In other words, the decision as to whether to use
a group preferential or a preallocation defense strategy depends A
upon what the defense thinks the offense knows about its plans - a A
notably difficult matter to assess.

What if the offense weapon arrivals are random? Assume u
that the offense attacks with (4,3,2,1) weapons. There are, as be-
fore, six equiprobable ways in which the defense can select two
targets. If (1,2), (1,3), (1,4) or (2,3) are defended, then both targets 2
are saved. If (2,4) is defended then one target is saved. If (3,4) is
defended, three possibilities occur. The last two weapons to arrive
can be split between the two targets, in which case neither target
survives; the last two weapons to arrive can both be directed at the
four-weapon target, in which case the three-weapon target sur-
vives; the last two weapons to arrive can both be directed at the
three-weapon target, in which case the four-weapon target sur-
vives. These three events happen with probabilities
(3/7)(4/6) + (4/7)(3/6) = 4/7, (4/7)(3/6) = 2/7, and (3..i7)(2'6) = 1..7,
respectively, if the arrival order is random; the expected fraction
of surviving targets if (3 4) is defended is equal to
(0)(4/7) + (1/4)(2/7) + (1/4ý(1/7) = 3/28. The expected fraction of
surviving targets is, then, (2 /3)(1/2) + (1.'6)(1.4) + (L/6)(3/28) = 11/28.
The various possibilities are summarized in the table below. The
first column is, of course, the same as in the earlier table. The
best pure strategy for the offense is (5,2,2,1) -- he can insure that
the expected fraction of surviving targets is at most 0.348 no matter
what size subset the defense selects. In other words, the defense
gains 0.036 by shifting from a preallocation to a group preferential
strategy if he can be certain that the offense cannot control the
arrival order of its weapons. By using a mixed strategy, the
offense could hold the defense to somewhat less, but no less than
0.335, which is still better for the defense than a prea'location
strategy.

Again, the offense may be conservative and use the strategy
(4,3,2,1) to protect against a knowledgeable defense. If he does, Z
then the defense can insure that the expected fraction of targets
saved is 0.392.

I?
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EXPECTED FRACTION OF TARGETS SAVED A

(Random Offensive Arrival Order)

Offense Number of Targets Defended
Strategy 1 2 3

3,3,2,2) 0.250 0.458 0.244
3,3,3,1) 0.250 0.375 0.285
14,3,2,1) 0.250 0.392 0.308
4,2,2,2) 0.250 0.375 0.273
4,4,1,1) 0.250 0.422 0.329
592,2,1) 0.250 0.335 0.348
5,3,1,1) 0.250 0.342 0.365

(6,2,1,1) 0.188 0.325 0.370
(7,1,1,1) 0.188 0.330 0.395

To sum up this example, it is likely to be profitable for the
defense to shift from a preallocation to a group preferential
strategy - the defense loses unlv against a well-informed offense
which can exercise a high degree of control over its attack order.

4.4.3 A More General Class of Nonpreallocation Strategies

There is no need for the defense to restrict himself to a non-
preallocation strategy in which the entire missile stockpile is used
to defend a subset of the targets. In fact, the defense can select a
mixture of preallocation and nonpreallocation strategies in the fol-
lowing manner. Divide the target set into m disjoint groups of
size t1,t 2 ,...,tm, and allocate di weapons to the defense of the ith

group. Note that

m in

t.=T and E d.=D
i=l i=1

Here T, D, and A represent the (unnormalized) numbers of targets,
defensive missiles, and offensive weapons. If all t. = 1, then one is

dealing with a preallocation strategy; if m = 2 and one of the d = D,

then one is dealing with the group preferential strategy discussed
in Section 4.4.2. A more general strategy is specified by (ti,di),

i = 1,.. .,m: the assignment of targets to the m disjoint groups is
done at random.

The offense is assumed to use a preallocation strategy: a
fraction v of the targets is attacked by i weapons, and the assign-

ment of targets to weapons is done at random. Thus, an offense
strategy is specified by (y0 ,y. .. ), where iyi A'T. For sim-

plicity, assume that the attack takes place in two waves, the second
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wave consisting of exactly one weapon on each target for which
i > 0 (offensive arrival order controlled).

It appears quite difficult to determine the optimum offensive
and defensive strategies as a function of A, D and T if D -. A and AA
T -- A. For defense-last-move, Analytic Services Corporation
(1968) has shown that the determination of an optimum offense
strategy is equivalent to solving a set of equations which is non-
linear in the yi; the computational problems become formidable
for all but the simplest examples.

The following example is given in Analytic Services Corpora-
tion (1968). Assume that q0 = 0 and ql = 1, so the defense is one-
on-one. Let D = 4, and let A = 2T: what strategy (y 0 ,yl,...) should

the offense select if the defense has the last move? Assume that
at least one and at most four weapons are assigned to each target,
and that the defense, knowing the strategy (0,YlY 2,y 3 ,Y4 ,0,...) but

not which targets will actually be attacked by i weapons, selects
one of the following three strategies:

(1,1), (1,1), (1,1), (1,1), (T-4,0) (preallocation)

(1,2), (1,2), (T-2,Q) (preallocation)

(2,4), (T-2,0) (nonpreallocation)

Assume that the offense wishes to insure that the expected number
of targets saved per defense missile used is the same for all three
strategy components (1,1), (1,2) and (2,4). Equating the first and
second components in terms of the expected number of targets
saved, one has

2yv 1 Yl +Y 2

Equating the first and third components, one has

4y = 2 (Y2+2vl 2 +2Yl, 3 +Y•)+ (2)l 4_+2Y 2 Y3 )

The first term in parentheses is the probability that the two targets
with the (2,4) component defense will be attacked by a total of two,
three or four weapons: the second term is the probability that they
will be attacked by five weapons (and hence only one target saved).
The right-hand side of this equation is strictly correct only in the
limit as T--. The attack restrictions on the yi are:

Yl + Y2 + Y3 + = 1

y + 2Y2 + 3v 3 + 4Y4 = 2

14



150 4.4.3

Solving these four equations in four unknowns, one finds the opti-
mum offense strategy (0, 3/8 3V8, 1/8, 1/8, 0,..).. The expected
number of targets saved is 3P2. Note that this strategy can be im-
plemented exactly only when T is an integral multiple of 8.

It would be desirable to solve this problem without the re-
strictions on the minimum and maximum attack size and the allow-
able defense strategies. It seems likely that the optimum offense
strategy and the expected number of targets saved would be un-
changed.

However, it is clear that if one considers the corresponding
offense-last-move problem, the above limitations on the offense
strategies are unnecessarily restrictive. It is conjectured that if
the defense is allowed to choose any strategy (ti,d.) i .= 1,2,..,m,

and if the offense knows this strategy but not the specific target
assignments, then the optimum defense strategy is (2,4), (T-2,O)
and the optimum offense response is (0, 3/4, 0, 0, 0, 1/4, 0,....).
The expected number of targets saved ranges from 1 (if T = 4) to
9/8 (as T--c).

If neither side knows the other's strategy before choosing its
own, then one is dealing with a game-theoretic problem. The ex-
pected number of targets saved will lie between the offense-last-
move and defense-last-move values, and both sides must use mix-
tures of strategies. ih ge , ., al, these game-theoretic problems arc
more difficult to solve. In Analytic Services Corporation (1968),
eleven equations in eleven unknowns are solved to determine the
optimum mix of the three allowable defense strategies as well as
the optimum mix of two offense strategies of the form (0, yl' Y2,

0, y4 ) and (0, yl, yl, y•, 0). The expected number of targets saved

turned out to be 1.4883 - very close to the defense-last-move
value.

In a later Analytic Services Corporation report, Jsrael (1970)
describes a linear program to determine approximately optimum
nonpreallocation defense strategies when targets are resistant to
damage (q0 > 0) and missiles are unreliable~ql .: 1). As mentioned
earlier, the expected fraction of targets surviving is not linear in
the offensive allocations yi; it is linear in the sense that a mixed

offense strategy is a linear combination of pure offense strategies.
Unfortunately, this means that an exact linear programming solu-
tion to the offense and defense allocation problem must consider as
many linear constraints as there are pure offense strategies -- a
truly astronomical number. The linear program devised by Israel
is much more modest - it only considers a relatively few pure
offense strategies, selected to have intuitively desirable properties.
It is difficult to determine how close to the optimum one comes
except for extremely small values of A, D, and T. He uses this
program to infer plausible rules of thumb such as the following:
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Typically, allocations (ti,d ) satisfy the equation

di/ti = max(A/T,DA'). In one example (T = 24, A 108,

0 % D - 108, q0 = 0, ql = 1), the expected fraction of targets saved

using an approximately optimum nonpreallocation strategy lies
about halfway between a defense-last-move strategy and the
Matheson game strategy.

4.4.4 A Nonpreallocation Strategv Involving a Stockpile of

Defensive Missiles Held in Reserve

Penn (1969) has also considered a mixture of nonpreallocation
and preallocation defense strategies. In order to simplify the
analysis, he assumes a continuous Blotto game (that is, offensive
weapons and defensive missiles can be assigned in fractions, not
just integers): furthermore, he assumes perfect interceptors and
soft targets (q0 = 0, ql = 1). The offense has a weapons available

per target, and the defense has d missiles per target which must
be preallocated, plus a reserve of r missiles per target which
need not be preallocated to any specific target. As before, one
must distinguish between attack dominance, when some targets
must be left undefended, and defense dominance, when all targets
are defended. Penn assumes that the offense arrival order is con-
trolled rather than random: specifically, he assumes the offense
saves back E weapons per target until the end of the attack, andthen applies these uniformly over the targets.

Although this model has been made as simple as possible,
Penn is unable to derive the optimum offense and defense strate-
gies except when these strategies have been substantially re-
stricted. However, it is interesting to note that the expected
fraction of targets saved is the same for two rather different re-
stricted classes of defense straFe-FTe's, suggesting that the result
has more general applicability. These two different restricted
classes of defense strategies are:

(1) Tapered Defense Strategy Class: Allocate the d pre-
1llocation missiles per target as if no reserves were
available (see Section 4.3.6, in particular the reference
Penn (1971)). Each target is also promised reserve
missiles up to a specified maximum amount. If all
targets actually received their maximum reserve assign- A
ments, a total of r' - r reserve missiles per target
would be needed (in short, more are promised than can
be delivered). The maximum number of reserves prom-
ised to each target is calculated by pretending that one
has a defensive stockpile of d + r' missiles per target,
and preallocating all these missiles (as in Section 4.3.6)"
the difference between the d-missile preallocation mned
the (d+r')-missile preallocation at a target determines
the number of reserve missiles promised to that target.

I
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Once the missiles preallocated to a target are used up,
they are assigned reserve missiles as needed up to the

number promised, provided any missiles in the reserve
stockpile remain.

(2) Defend-to-the-Death Strategy Class: Allocate the d pre-
allocation missiles per target to a fraction x of the tar-
gets (see Section 4.4.1): allocate the r reserve missiles
per target to the remainder of the targets, with the under-
stancting that any reserve missile defends any target (no
matter how heavily attacked) as long as any reserves re-
main. The offense, of course, does not know which tar-
gets have been selected in the fraction x.

First, Penn guesses the optimum defense strategy for each

class, and proves that using these two strategies with offense-last-
move the expected fraction of targets saved is

d r
E(f) _a +d if d + r - a (offense dominant)

E(f) = 1 -a-r) if d + r a (defense dominant)
2ad

If the defense is dominant, the above formula assumes r a; if
r > a, E(f) = 0. In tapered defense, about twice as many reserves

2 2are promised as are actually available: 2ar/(a-r) + r d/(a-r) for

offense dominance, 2r + r 2 /d for defense dominance. In defend-to-
the-death, on the other hand, one allocates the reserve missiles to
a fraction r/a of the targets, so that exactly enough reserves are
available to counter the attack. Unless the attack is uniform, this
will be true only in the limit as the number of targets approaches
infinity (and variations in the size of the attack on this fraction be-
come insignificant).

The above calculations assume that d and r have been fixed in
advance. This is reasonable, for instance, if d represents short-
range missiles that can defend any target in the group. (Models of
this type are discussed in more detail in Sections 6.3.1-6.3.5.) If,
however, the defense has a free hand to set the levels d and r,
subject to the constraint d + r = c, then he always should choose
d = 0, r = c. In this case, E(f) = c/a if the offense is dominant and
E(f) = 1 if the defense is dominant.

Finally, Penn guesses the optimum offense strategy with
defense-last-move, obtaining the same E(f) as above.

4.5 DEFENSE DAMAGE ASSESSMENT STRATEGIES

In the preceding sections, it was assumed that the defense
has no way of evaluating target damage during the course of an
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engagement: as a consequence, defensive missiles may be wasted
on a target which has already been destroyed. It is obvious that
the defense should be able to increase the expected fraction of tar-
gets saved if he defends only undestroyed targets. Is the gain in
the expected fraction of targets saved large enough to make the
cost of this additional real-time data processing worthwhile?

4.5.1 Damage Assessment Strategies When the Attack is Known

to the Defense

Krunim (1969) has developed a rather general defense-last-
move damage assessment model. In particular, he assumes that
both the defense and the offense know the values of A, D, T, q 0 and

q,. Further, he assumes that the defense knows that the offense

will attack in a waves, ,1locating one offensive weapon to each tar-
get on each wave. The defense can assess damage after each wave,
but the offense has no way of knowing which targets he has de-
stroyed. (Actually, Krumm's model is slightly more general - he
assumes that the defensive missile reliability, ql, monotonically

decreases with each successive wave of the attack, and that both
of the offense and defense know these changing probabilities. On
the other hand, Abramson and Shapiro (no date) consider the same
damage assessment model as Krumm, but restrict themselves to
perfect defensive missiles - q, is always equal to unity.)

The value of E(f) calculated by the following formulas should
be viewed with some caution, particuiarly for small values of A, D
and T. E(f) is derived under the assumption that the number of tar-
gets surviving after each wave is exactly given by the expected
value. Note that this model is not a probabilistic one but a deter-
ministic one. In reality, the number of survivors will differ some-
what from the expected value, and it is possible that the defensive
missiles will run out before the defense of the final wave is con'-
pleted. Alternatively, the defense may end up with unexpended
missiles at the end of the engagement. A calculation of E(f) taking
the actual engagement variability into account appears to be pro-
hibitively difficult.

It is intuitively reasonable (and Krumm, in fact, proves) that
the optimum defense has the following general form when q0 _- 0.

For analytical convenience, the waves are numbered backwards -
wave a arrives first and wave 1 arrives last in the attack.

Waves a through n + 1: defeend no ta gets
Wave n: defend a fraction of the surviving target,-
Waves n - 1 through 1: defend all surviving targets

Notice that when q 0 = 0, the defense must start on the first wave of

the attack; otherwise, there wili be nothing left to defend at stage
two. In this case, the strategy consints of defending a certain
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fraction of targets starting at wave a. The offense is assumed to
be ignorant of which targets are actually selected for defense.

To determine the optimum defense strategy, one must first
know the value of n - when should one stop observing and start
defending? Calculate the sequence

1- (CI + (1 -qo)q ) a-i

(1-qo)(1-q 1 ) q1

for i = a,a-1,. . .,1, and set n equal to the smallest value of i for
which Qi . d.

Let di, i = n,n-1,. . .,l denote the expected number of defen-

sive missiles to allocate to targets on the ith wave. Krumm shows

that dn + dn. + +.. + d1 equals the defensive stockpile, D, and

gives a set of recursive equations to determine the di by:

* d(l-qo)(l-q l) - n- o+(l -qO)q )l q l
d n =T n?•:

(1-q 0 )(1-ql) + (1 -(q0+(1-q0)q1).(1-q0)ql

* ,,a-n+l1
d n 1 = 0qo + (1-qo)qldn,

dn i dn -i+lqo + (1-qo)ql) for i = 2,3,. .. ,n-1

Finally, Krumm derives the expected fraction of targets sur-
viving if this strategy is used:

n
a I

E(f) = q 0 +4y (I-q0 ) q I j1

Alternatively, one can write

E(f) = 1 d(q_ + (l-qO)ql)

Krumm makes the related point that the defensive damage
assessment strategy could be improved if it were revised at the
end of each attacking wave, taking as input the number of surviv-
ing targets and number of remaining defensive missiles.



4.5.2 155

It is of interest to calculate the maximum value of D required
by the defensive damage assessment strategy - that is, how many
defensive missiles are n, ýded if all targets are defended on all
waves?

D _ 1 - ((10 + (1-q 0)ql)
maX - T - (1-c0(1-q 1)

As ex'pected, D ax is less than or equal to A since destroved tar-
gets are attacked but not defended in later waves.

Under what conditions should the defense launch more than
one defensivc missile against an incoming weapon? Krumm points
out that there may exist conditions under which it is more advan-
tageous (in terms of increasing E(f)) to defend some targets dur-
ing the final wave attack with two missiles than to defend targets
during one of the previously undefended waves. In pdl'ticular, he
shows that:

(1) if n = 1, single launches should be used at wave 1 and
excess defensive missiles assigned to wave 2 tunder all
circumstaunces:

(2) if i = 2, single launches shiluld be used jt w\dve 1 and --
excess defensive missiles a-:zigned to wave 3 if

2
ql -- 1 - qj.(1-q 0 ).

The expected fraction of targets saved using a preallocation
strategy can be compared with the (larger) expected fraction of
targets saved using a damage assessment strategy. Numerical
calculations show that the difference in expected values never ex-ceeds 0.086 for any value of a, d and q0' if ql = 1. In short, damiag2e

assessment strategies gain little for the defense in the defense-
last-move model. It is likely that a more extensive table including
q1 I 1 would tell much the same story.
4.5.2 Damage Assessment Strategies Against Attacks of

Unknown Size

An important drawback of Krunmm's model is his assumption
that the defense knows the exact offense allocation before the start
of the attack. The models discussed in this section modify this
assumption son'ewhat. In particular, assume that both the offense
and the defense know the values of a, Ld, q0 and ql, but that the de-
fense no longer knows the allocation of offensive weapons to targets
before the start of the engagement. To make the problem analyti-
cally tractable, it is again necessary to postulate the hypotheticalattack introduced in Section 4.4.1: instead of allocating different

S!I
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numbers of weapons to the various targets, the offense attacks the
group of targets in "waves,' each consisting of a single weapon
against each target. Furthermore, the number of waves in the
attack is a random variable, i, having a probability density function
that can be selected by the offense but which must have a mean
value of a: Siv. = a. In other words, the offense attacks the entire

set of targets with the same type of strategy that he earlier used oni
individual targets in the set.

L The damage assessment strategy of Section 4.5.1, it should
be noted, requires that the defense know the offense level against
the targets in the group. One can determine the effect of an in-
correct assumption by the defense about the offense level, and
consider how the offense might take advantage of such an incorrect
assumption. Modifying the formulas introduced in the defense-
last-move model, it is easy for both sides to calculate the expected
fraction of targets saved if the defense assumes an attack level n
and the offense actually uses an attack level i. Let s denote the
first defended level corresponding to an assumed attack level n;
then

E (f) = q for i = 1,2,.. .,s-1

q f(1-qp(d(q,-q 0) + q0 F

E f W I \for i = s,s+l,.. .,n
(l-cll) + ('1 -q -S)(ql -qO)

qt-n q n-sql)(d(ql-q0 ) +q 0 )
Ei(f) (-q) + (1-qnds)(ql-qO) + for i = n+l,n+2,.

How should the offense select his v, -- that is, the probabili-

ties of assigning exactly i waves to the attack? One reasonable
criterion for him to use is to select the yi so that the exp)ected

fraction of targets saved is a constant, no matter what n the de- A
fense assumes (d - n -- m, where m denotes the maximum level
of i). It turns out that the expected fraction of targets lost is

Ef (o + d(ql-co)

i i 1 + (l-qO)(m-l)

a constant independent of n, if the v. are chosen so t hat"1
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1 -qo
Yl= Y2 "rn-i 1 + (1-q 0 )(m-1)

= 1 +(1-o 0 (m-l)

with In determined from the equation

i=

Interestingly, this offense strategy can be recognized as the
Matheson preallocation strategy for the offense when q, equals
unity and h, the lowest attack level, is also unity. Note that the
offense does not need to know the defensive value of ql in applying

this strategy (except when calculating the expected fraction of tar-
gets saved).

The gain in using a damage assessment strategy can be de-
termined by comparing the above formula giving the expected
fraction of targets saved w-ith the corresponding Matheson pre-
allocation formula (as noted above, the Matheson preallocation
results are unchanged when the hypothetical attack is used).
Again, consider the example in which d - 2, m = 4, ql = 1 and

S= 1,'2. The offensive level a is equal to 14.5, corresponding

to a strategy of Yv = Y= = 1/5 and Y4  2'5. The expected

fraction of targets saved is equal to 3:5 = 0.600. If preallocation
strategies are used, one has

x 30 =3.10, xI =X = x3 = x4 =3:20, x 5 = 1' 10

Y0 = 16/100, l =y2 =y3 =y 4 = 14,'100, Y5 = 28.100

and the P qpected fraction of targets saved is 29.'50 = 0.580. In
other v.:-:ds, the gain achieved by using a damage assessment
strate-,• is equal to 0.020.

4.6 ATTACKER -ORIENTED DEFENSE STRATEGIES

The preceding sections considered the gain in effectiveness
iU the defense could assess damage to its targets" the next sec-
tions, in contrast, assess the situation in which the defense is
unable to predict which target an offensive weapon is aimed at
before engaging it with a missile. One would certainly expect the
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result to be a loss in effectiveness over the optimal strategy mak-
ing full use of all information. However, preallocation strategies
do not use all information either, and are not very close to optimal A
when the defense is relatively strong. In such cases, various non-
preallocation stratecies, such as those discussed here and earlier,
may be attractive.

If the defense cannot evaluate the attack, and if he is limited
to one-on-one engagements, the best he can do is to assign missiles
at random to the offensive weapons. If the offense knows that the 61
defense is limited to this strategy, he should attack each target with
a weapons (assuming a is an integer).

If d >- a, the defense is quite effective, since every weapon is
assigned a missile: the expected fraction of surviving targets is

given by

E(f) = q,

If d <- a, each incoming offensive weapon has a chance of only d.ia
of being assigned a missile" the number of weapons directed at a
given target which are actually intercepted is a random variable
having a binomial probability density function. The expected frac-
tion of surviving targets is

a I (i d)a-i a-i i

E(f) = q-, -

i=0

Consider the following example: d = 2, a = 3, q, = 1, q0  112.

The expected fraction of targets saved using the weapon defense
strategy is 125/216 = 0.579. The expected fraction of targets saved
using defense-last-move and offense-last-move strategies is 0.708
and 0.500, respectively. If neither side knows the other's alloca-
tion, and optimal preallocation strategies are used, one has

x 0 =3/10. x1 =X 2 x3 =X 4  3.'20, x5 = 1.'10

Y C'10, Y Y 3. 20, y5  3"10

and the expected fraction of targets saved is 0.55.

Note that the weapon strategy is superior to the preallocation
strategy despite the fact that the defense has less attack informa-
hon. The reason for this is simple: the weapon strategy makes
use of all the defensiv, missiles (even though less efficiently than
in defen-se-last-move), but the preallocation defense strategy, ends
up with an expected fraction 53'200 0.265 of the oefensive 'mis-
siles unused.
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It is clear from the above example that a defense strategy
which assigns missiles to weapons instead of targets is worth
studying in its own right; it may be advantageous to use such a
strategy even when it is possible for the defense to predict which
target an offensive weapon is aimed at. In principle, one should be
able to divide (a,d,q0 ,ql) space into two regions - in one a preallo-

cation (that is, target-oriented) defense sLrategy is preferred, and
in the other, a weapon (that is, attacker-oriented) defense strategy
is preferred. However, it is clear that in the latter case, the de-
fense can expect to do better yet. If the defense has chosen not to
engage a weapon aimed at a given target, then (unless, perhaps, q0

is small) he might as well not engage any other weapons aimed at
the same target, saving missiles to be used more advantageously
against other weapons.

Weapon defense strategies have been studied in some detail.
Weapon defense strategies will be referred to as attacker-oriented
defense strategies in the remainder of Section 4.6. Assume, as
usual, that the offense has a stockpile of A weapons to be used
against a set of T equal-valued targets, and the defense has a
stockpile of D missiles to be used in their defense. Any missile
can be used to intercept a weapon attacking any target. A target is
destroyed by an unintercepted weapon with probability p. and a
missile destroys the weapon it is directed against with probability
p. Both offense and defense know the value of A, D, T, p and p.
The offense wishes to minimize E(f), the expected fraction of tar-
gets saved, and the defense wishes to maximize this quantity.

Attacker-oriented defense strategies are most likely to be
useful when the defense has at least as many missiles as the
offense has weapons. (Certainly, preallocation strategies are not
likely to be useful in such a case, unless p is rather small.) There-
fore, the restriction that at most one missile attacks a weapon
(usuaily assumed in preallocation strategies) will be removed in
the rest of Section 4.6.

4.6.1 Neither Side Knows the Other's Allocation

Suppose that both sides must make their allocations in igno-
rance of the other's. In this case it can be seen that the optimum
strategics for both are to allocate missiles and weapons in random
fashion as uniformly as possible. No proof of this fact appears
generally available, so one will be given here.

It will first be shown that the optimal allocation of offensive
weapons is as uniform as possible. Assume the contrary, so that
in the optimal allocation two targets receive i wuid n weapons re-
spectively, where n -. m + I. Then the probability, X, that the first
target survives is the probability that it survives all of the m offen-
sive weapons directed against it. This value is unknown to the
offense, since he does not know how the defense has assigned mis-
siles to the weapons, but it has a definite value for any specific
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engagement. Let the probability that the second target survives be
YZP, where Y is the probability that the target survives the first
m weapons directed against it, Z is the probability it survives the
next n - m - 1, and P is the probability it survives the last. Thus
the two targets contribute an expected number of survivors of
X + YZP.

Compare this allocation with that produced by reassigning to
the first target the last weapon allocated to the second. This gives
a more uniform allocation. The change in the expected number of
targets surviving is

X + YZP - XP - YZ = (X-YZ)(I-P)

This change may be positive or negative. But note that the original
allocation was just as likely to make the contribution of Y + XZP
expected survivors. In this case the change in the expected num-
ber of targets surviving is

Y + XZP - YP - XZ = (Y-XZ)(1-P)

Since these two situations are equally likely, the above two
expressions may be added:

(X-YZ)(1-P) + (Y-XZ)(1-P) = (X+Y)(l-Z (l-P) •- 0

This expression is nonnegative, so that on the average, the more
uniform allocation leads to a better outcome for the offense. Note
that in certain special situations in which some of the probabilities
are 0 or 1, some non-uniforni allocations may be optimal; but the
uniform allocation will always be optimal as well.

The proof that the optimal defensive allocation is as uniform
as possible is somewhat similar. Set 7 1 - p. Then the prob-
ability that a target survives attack by a weapon to which have been
assigned m missiles is 1 - prm. Assume that the optimum defen-
sive allocation is non-uniform, so that two weapons are assigned
m and n defensive missiles respectively, where n "> m + 1. Sup-
pose that it happens that the offensive allocation assigns both of
these to the same target. Then the probability the target survives

is X(1-prm)(1-pTn), where X gives the effect of any other weapons
assigned to it. Then the change in the number of targets surviving
if the defense had used Lhe more uniform allocation (m+l,n-1) is

X(1-PTm)(l-pTn) -X(l-prm+l)(lprn-l) =-Xp(1-)(7m-Tn'l 0

So in this case the defense prefers the more uniform allocation.

Now suppose that it happens that the offensive allocation
assigns the two weapons to different targets. Then these two tar-
gets contribute an amount to the expected number of survivors
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equal to X(l-p-m) + Y(1-pTn), where X and Y indicate the effect
of the other weapons assigned to them. Analogously to the situa-
ation encountered before, the outcome X(1-pIn) + Y(l-pr m ) is
equally likely. Thus the overall change produced by using the
more uniform defensive allocation is measured by

(X(l -pm) + y(I-p7 -n) + X(l-p7"n) + Y(1-p Tm))

-(X(1-Prm+ 1) + Y(1-Pn7l) + X(l-p7n-l + Y(1-prm+l))

= -(X+Y)p(1-7)(rn -n1) _,: 0

Again, the defense prefers the more uniform allocation. Thus the
optimal defensive allocation is as uniform as possible.

Calculating exactly the value of E(f) resulting from these
optimal allocations is tedious but straightforward. Set k = [D/A],
r = D - Ak, P1 = p(l-p)k and P 2 -. P(1-P)k4I* The attacker has
A - r superior weapons with target kill probability Pl, and r in-

ferior weapons with target kill probability P 2 ' but of course he does
not know which is which. Set j = [A/T1 and s = A - Tj. Recognizing
that the hypergeometric distribution is involved, one finds that

E (f) = S1 +S ,

where

j+l

i-l

and

$2  (l-Pl)i(l-p)-ir')(Ajr)/(A)

It would be of interest to determine the boundary of
(A/T,D T,p,p)-space on which the E(f) corresponding to the ran-
domized attacker-oriented defense strategy and the appropriate
offense strategy is equal to the E(f) when preallocation offense and
defense strategies (as determined by Matheson) are used. Such in-
formation would enable one to make decisions about which type of
strategies to use.
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4.6.2 Offense Knows How Defense Will Assign All Missiles

Another interesting case is the offense-last-move version of
the above, namely that in which the offense knows how the defense
will assign missiles to each offensive weapon. This is a less likely
situation than the previous one, but there is at least one rather
plausible case where it could arise, namely when D i- A and the de-
fense assigns missiles to the first D arriving weapons in a sequen-
tial attack.

As will be seen, the offensive allocation problem is rather
involved, but the optimal defense is to allocate missiles as uni-
formly as possible. The proof is similar to that of the previous
section.

Assume ihe contrary, so that in the optimal allocation, two
weapons receive m and n missiles respectively, where n m + 1.
In the notation of the previous section, the probabilities that a tar-

m n
get survives an attack by these weapons are 1 - pr and 1 - pr
respectively. Compare this defensive allocation with one in which
the two weapons in question receive m + 1 and n - 1 missiles. Con-
sider the optimal offensive allocation against the latter defensive
allocation.

If the two weapons are assigned to the same target in the
optimal offensive allocation, the same calculation used in the pre-
vious section shows that the offense does better against the less
uniform defensive allocation. Next suppose that the optimal offen-
sive allocation against the more uniform defensive allocation
assigns the two weapons to different targets. Then the expected
number of survivors among the two targets can be written

X(1 -Pm+l) + Y(1-p7nrI-1

Because this is an optimal allocation, one may assume X Y,
for if X < Y, one has

(X(1-pTm4l) + - (X(1-pTn-1) + Y(1-p-,m+l))

(Y-X)p(lm+1 -n-1):: 0

But if X Y one has

(X(l -p7"') + Y (1 -p~'n (X(1-P~1)7 + Y(l -p7 )

-Pm(1-)(X-Y7.n rn- 0) ,

so the defense prefers thle more uniform allocation.
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Thus, the defense should allocate missiles as uniformly as
possible. The same is true of the offense, in a sense: however, it
is difficult to specify what "as uniformly as possible" means. A
fairly satisfactory algorithm is available if the defense uses his
optimal allocation. The offense recognizes that he has two types
of weapons to be assigned to targets - A - (D-A[D.!A]) superior
ones with a kill probability P = P(1-p)[DiDAI and D - AIDMA] in-

ferior ones with a kill probability P 2 = P(1-p)[DA1+1. The prob-

lem thus has an interesting equivalent - the allocation of missiles
of two different types (say, different warhead sizes) in a no-defense
situation. If he assigns mi superior weapons and ni inferior

weapons to the ith target, the probability of survival of the target
m. n.

is equal to Si =(1-P 1) '(1_P 2) 1'

It can be shown that the minimum possible value of E(f) is
achieved if all Si are equal. In general, it is impossible to allocate

mi (summing to A - (D-A[D/A])) and ni (summing to D-A[D.A]) so
that all Si are equal, and it iv, a complicated combinatorial problem
to find that allocation of the mi and the ni leading to the smallest

realizable value of E(f). The following algorithm fur allocating the
mi and ni has been proposed:

(1) sequentially assign each superior weapon to that target
with the highest probability of survival Si (taking all
earlier weapons assignments to targets into account),

(2) after superior weapons have been exhausted, assign in-
ferior weapons to targets in the same manner, and

(3) make pairwise comparisons between targets to see
whether there exist exchanges of weapons which will
further decrease E(fM.

Burr and Graham (1970) have studied algorithms of this sort.
They prove that the above algorithm leads to the optimum, provided
that a = log(1-P 2 )/log(1-P 1 ) is an irrational number. In fact, only
step (3) is actually needed by the algorithm: steps (1) and (2) are
intended to give a solution somewhere near the optimum before the
repetitive step (3) is begun. It is also worth noting that in the opti-
mal allocation at most three distinct pairs (mi,n i.) can occur. The

condition that a be irrational has the effect of eliminating so-called
degeneracies, that is, cases in which there can exist two essen-
firllv cdiffe'rent al ti'c;ns giving the same value of E(f). Since a
can easily be rational, it would be desirable to find a rule to handle
degeneracies. One possibility would be to perturb a in some
fashion.
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If D: A is an integer, then the offense strategy is easy to
specify - assign [A/TT weapons to Ti = T - (A-T[A/T]) targets,

and [A,/T] + 1 weapons to T 2 = A - T[A/T! targets. The expected

fraction of survivors if both sides use optimum strategies is

E (f) = (T iT)(l. lpD.A) + (T ,/T)(l-p(l-p)(D/A)+1)

One E(f) has been calculated, the weapons analyst can decide
whether it is more advantageous for the defense to use an -ttacker-
oriented strategy or a preallocation strategy. It would be of inter-
est to determine the boundary on (A'T,D"T,p,p)-space on which
the two strategies have the same E(f).

4.7 OFFENSIVE DAMAGE ASSESSMENT STRATEGIES

The preceding two sections discussed the modifications that
must be made in both offensive weapon and defensive missile allo-
cation strategies when the defense knowledge of the attack or its
consequences is altered. This section considers the analogous
problem for the offense. How much better can the offonse do if he
attacks in waves, and has some knowledge of the effectiveness of
earlier waves before deciding which targets are to be attacked on
the current wave? What must the dcfcnse do to counter such an
offense?

4.7.1 Strategies if Targets Are Soft and Defensive Missiles Are

Reliable

To be specific, assume that the offense attacks a set of T tar-.
gets defended by a single missile stockpile. Suppose that the offense
can determine whether or not each of his weapons has been attacked
by a defensive missile. If one assumes that q, = 1 and q. - 0 (that
is, a defensive missile always destroys an incoming weapon, and
the target i- destroyed by an unintercepted weapon), this knowledge
is equiv:,t',nt to knowing with certainty which targets have been de-
stroyed o., earlier waves. As before, let a denote the offensive
weapon stockpile per target, and d (- a) the defensive missile
stockpile per target: both stockpiles are knowni to the offense and
defense. Suppose that the offense is restricted to a k-wave attack:
that is, on !,k-1) occasions, he can evaluate the effect of earlier
waves before assigning a new wave of weapons to targets. Filially,
suppose that the offense wishes to maximize the expected fraction
of targets destroyed and the defense wishes to minimize this
quantity.

Goodrich (1967) derives the optimum offensive and defensive
strategies to be used in the situation described above. At the ith
wave, the offense allocates a. weapons per target to each of the

1
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so-far-undestroyed targets (vai = a). Note that fractional alloca- A

tions are permitted. If a fraction fi of the targets remain unde-

stroyed after the first (i - 1) waves, then the actual attack level per
target attacked is ai./f. Suppose that the defense notes that a.

weapons per target have been assigned on the ith wave, and fully
defends a fraction di/a. of these targets with an allocation of d.

weapons per target from its stockpile (7di = d). Clearly, f. is

equal to (dl al)(d 2 'a.9 . .. (di~l/ail), iand the fraction of targets

destroyed on the ith wave is fi(1-(dii.ai)). Therefore, the fraction

of targets destroyed in a k-wave attack is

k i-I k

i=1 j=1 i=1

In order to minimize E(f), the defense observes ai and selects d.
1 1

so that d./ai = d/a. The offense strategy is immaterial, and the
11 k

fraction destroyed is E*(f) imax mm E(f) 1 - (d,'a)
a d

However, a better strategy is available to the defense. He
can ignore the offensive allocation ai, and select d. = dT 'k missiles

to be used in the defense of each wave. It is not difficult to see that
the fraction of targets destroyed when this strategy is used is less
than or equal to E*(f), with equality occurring only if the offense
allocates aT/k weapons to each wave. In short, the defense can
take advantage of any nonoptimum offensive strategy besides ignor-
ing the size of the offensive allocation.

For example, let T = 12, k = 2, d = 2 and a = 4, and suppose
the offense attacks with 72 weapons on the first wave and 24 on the
second wave. The defense can counter this by allocating 36 mis-
siles on the first wave, saving 6 of the targets, and 12 missiles on
the second wave, saving 3 of these 6; the fraction destroyed is 3,,;4.
However, a superior defense strategy consists of allocating 24
missiles on the first wave, saving 4 of the targets, and 24 missiles
on the second wave, saving all of these 4 targets again: the fraction
destroyed is 2/3. Of course, the offense can counter this allocation
by assigning 48 weapons to the first wave and 48 to the second wave.
Then, the defense can do no better than save 3 targets as before.

These results are directly applicable only when the number
of offensive weapons and defensive missiles are integral multiples
of the number of targets attacked and defended at each wave (as in
the example). Goodrich (1967) describes how the offense and de-
fense strategies must be modified if this is not the case - if
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different integral numbers of missiles or weapons must be assigned
to different targets in a single wave of the attack.

4.7.2 Strategies if Targets Are Hard and Defensive Missiles

Are Reliable

The preceding analysis assumed that q0 , the probability that

the target survives an attack by an unintercepted weapon, is equal
to zero. Suppose that q0 is 1 - p instead. How does this modify the

offensive and defensive strategies? This problem is much more
difficult; in order to make any headway, Goodrich (1967) introduces
the simplifying assumption that the offense does not reattack a tar-
get on future waves if a weapon assigned to that target was not in-
tercepted by tho defense (even though the target may survive). The
expected fraction of targets destroyed on the ith wave becomes

fi(l_(di/ai))(1_(1_p) 1i ), where the last term denotes the prob-
ability of target kill by (ai /fi) unintercepted weapons acting inde-

pendently of each other. As before, the expected fraction of targets
destroyed in a k-wave attack is given by

k a. "f.\

i=1

where

i-1

fi= 11 (di/ai)

j=1

It appears impossible to solve in closed form for the offensive and
defensive strategies satisfying max min E(f), under the constraints

a d
that Žýa. = a and "d. =d. Goodrich points out that dynamic pro-1 1

gramming can be used to obtain the optimum strategies if a com-
puter is available. However, this is likely to be difficult, since
dynamic programming tends to be unsuitable for max-min problems
in practice.

However, an upper bound for E*(f) = max min E(f) can be
a d

easily obtained. Assume that an infinite number of waves can be
assigned by the offense. Let the first wave attack be a1 = a - d
weapons per target. If the defense responds with d1 missiles per

target, let the second wave attack be a2 = d1 weapons per target;
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if the defense responds with d 2 missiles per target to the second

wave, let the third wave attack be a 3 = d 2 weapons per target; and

so on. The undefended targets on the first wave are attacked with
a - d weapons apiece; the undefended targets on the second wave
attacked with dI/f1 = dI(a-d)/d1 = a - d weapons apiece; and so on.

In an infinite-wave attack, every target is eventually attacked but
not defended: hence, the expected fraction of targets destroyed is

E(f) = 1 -- (l-p)a-d

The same fraction of targets is destroyed if the attack sends
in weapons one at a time and the defense engages the first dT
attackers one-on-one: after the defense stockpile is exhausted, the
offense allocates his remaining weapons evenly among the targets.
It is impossible for the offense to do better than this.

Now let k again be finite, and suppose that the defense, in-
stead of seeking the optimum strategy, adopts one of the strategies
discussed previously - that is, suppose the defense observes ai

weapons per target on the ith wave and allocates di missiles per

target so that di/ai = d/a = h. Goodrich shows by the method of

Lagrange multipliers that the optimum offense strattegv corre-
sponding to this defense strategy is to allocate the same number
of weapons to each target being attacked:

a 1 - a 1 ,a 2 = a 1 h,a 3 = aIh2 .,ak = aIhk-1

so that a 1 = a(1-h)/(1-hk). The expected fraction of targets de-

stroyed is

E(ft) = (,1 _(1 _p))a( 1 -h) /0 -h k))( 1 hk)

For example, if p = 1/2, k = 2, T = 9, a - 15/9, and d z 10,/9, then
the offense allocates 1 weapon per target to the first wave and 2/3
weapon per target to the second wave. However, since only 6 tar-
gets are attacked on the second wave, the offense allocates 1 weapon
per target to the targets actually attacked. The defense strategy
allocates 6/9 missiles per target on the first wave (fuily defending
6 of the 9 targets), and 4/9 missiles per target on the second wave
(fully defending 4 of the 6 surviving targets). The expected fraction
of targets destroyed is E(f) = 5/18.

4.7.3 Strategies if Defensive Missiles Are Unreliable

It would be of interest to derive the optimum defense and
offense strategies for a k-wave attack when the defensive missile
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reliability p is less than unity, for either p = 1 or p < 1. In order
to make either problem analytically tractable it may be necessary
to use as a criterion of effectiveness the expected nunmber of weap-
ons penetrating the defense (summed over all targets) instead of the
expected fraction of targets destroyed. Problems such as these
have been considered in Chapter 3.

More generally, suppose that the offense knows not only
whether or not his weapon has been engaged (and, therefore, de-
stroyed with probability p = 1 or p < 1), but also knows where the
weapon has impacted with respect to the target. If a cookie-cutter
damage-function is assumed, this is equivalent to assuming that
the offense knows whether or not he has destroyed the target (and
can therefore decide whether or not to include it in future attack
waves); if a diffused Gaussian damage function is assumed, he can
at least assess the probability of target kill (and take this into
account in future attack waves). No work on this problem is
known.

4.7.4 Damage Assessment for Unconstrained Offensive Weapon

Stockpiles

Brodheim, Herzer and Russ (1967) discuss a somewhat differ-
ent offensive damage assessment problem. They assume that the
offense is attacking a set of T isolated point targets defended by R
single stockpile of D defensive missiles. Each defensive missile
has a probability p of destroying an offensive weapon, and each unin-
tercepted weapon has a probability p of destroying the target it is
aimed at.

The offense and defense both know the values of T, D, p and p"
however, the defense does not know the size of the offensive stock-
pile. The offense assigns one weapon at a time to a target, and be-
tween firings can observe whether or not the target survived the
weapon. The offense continues to fire weapons at undestroyed tar-
gets until he has destroyed all T targ.ts.

Assume that the defense wishes to allocate defensive missiles
to incoming weapons ýi such a way as to maximize the expected num-
ber of weapons required to destroy T targets. The optimum missile
allocation can be found by means of a recursive argument (dynamic
programming), working back from the end of the engagement to the
start. Let f(i, j) be the expected number of offensive weapons re-
quired to destroy T targets, given j defensive missiles available.
The initial conditions are easily calculated:

f(0,j) 0 for all j

f(i,0) = 1 + (1-p)f(i,0) + pf(i-1,O)

so that f(i,0) = i/p. The recursive equation is:
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f(i,j) = max (1 + f(j,j-m)(l-p(1-p)m) +f(i-l,j-m)p(1-p)m)

From this, one can iteratively find f(T,D) and the associated defense
strategy with the aid of an electronic computer. One should note
that this problem generalizes one considered in Section 3.2.4.

If this recursive equation is solved repeatedly for different
values of i, one can find that value of i corresponding to a specified
offensive stockpile A. The quantity i/T can then be regarded as an
upper bound to the expected fraction of targets destroyed when the
offensive damage assessment is imperfect, as assumed in the
models discussed earlier in this section.

4.8 SUMMARY

This chapter, the core of the monograph, considers the joint
offensive and defensive strategies when a salvo of identical weapons
attacks a group of identical targets, any of which can be defended by
any of a stockpile of identical unreliable missiles in one-on-one en-
gagements. The criterion used throughout the chaipter is the ex-
pected fraction of targets saved. Damage radius and aiming error,
separately treated in earlier chapters, are subsumed into a single
probability of kill of the target by an unintercepted weapon. The
offense and defense know each other's stockpile sizes, the weapon
reliability, and the missile unreliability; the models in this chapter
differ principally in the amount of additional information each may
have about the attack.

After a short discussion of defense-last-move (defense knows
allocation of weapons to each target) and offense-last-move (offense
knows allocation of missiles to each target) strategies, the problem
of how each side preallocates when neither knows the other's alloca-
tion is discussed at considerable length. Less is known about a re-
lated class of strategies in which the offense preallocates normally
but the defense allocates missiles to the defense of target groups
instead of single targets.

The defense can save somewhat more targets if the offense
attacks sequentially (one weapon per target in each wave) and the
defense can assess damage to targets between weapon arrivals. On
the other hand, if the defense cannot even determnine which target a
weapon is directed against at the time that an intercept must be de-
cided upon, preallocation strategies for the defense are impossible
and he must assign missiles as evenly as possible to weapons.
Damage assessment is a two-way street, and the final section de-
termines the advantages that accrue to the offense if he can assess
target damage during the course of a sequential attack.



CHAPTER FIVE

OFFEN '2 AND DEFENSE STRATEGIES FOR A

GROUP 'TARGETS WITH DIFFERENT VALUES

In the i)rcceding- chapter it was assumed that all tareets in
a group have the same' value for both the detcrese and the offense.
In this chapter, this requirement is relaxed - it is assumed in-
stead that the ith target has a value vi, a lpositive real number

which is known to both the oftiense and defense. The question (, ;I
how these values are agreed upon is not considered. It, for cx-
ample, the targets to be defended are urban areas, the value may
be proportional to populhiion: if the targets to be defended are
ICBM silos, the v'alue mnay be proportional to the warhead yield ,)r
someo related quantity.

In gcneral, the orathematical m o(del introduced at the he i~n-
niing of Chapter 4 is carried over to multivalued targets. It is

u'a r fhat olensc an"-" d"~-eenc strategics -,.¶11 Ilnend iporla.ll-
upon the extent of kniowledge the otfense has about the defense, and
vice versa. The c ritrinon of effectivenemcss is nowv, the expected
value of the targets saved, rather than the expectcd fractio. of the --1
group. No restriction to on.-on-one ml.issile geml &-'ne ents is made -
in this c hapter. However, in' Sections 5.5.1-5.7.2 it is usually as-
suned that defensive missiles have perfect reliability so that a
one-on-on, missile defense is sufficient.

"The definitions ,f )lfuensive aid defensive swockpiJes must bc
slightly modified. li Chaptei 4, most calculations Wove. ccaried
out on a per-targei basis becausie all targets were dientic al: this
r is 1o longer pos'sible. Instead, dcfine aI , d d. aUi 1 thi- ,nfltr (If
offensive weap~on.s ald tho, 111w,.utr of de~fen1siVe Wis.sile's ;LSIt'.11Cd

to the ith target, r-esj eCtivel'. The nunmbea' r of targets4 in the g ci ul)
is denoted by T. Let A ahd 1) denote the total stockpiles available
for the engagement: thus,

T

A ; i and F) -._ d
i 1 i :l

The constants A and 1) are assUmed tO ) 1,C i.0W:ln 10) I uth 1l11c OlI' uS.:

aid the dlefen~se.

in Chapter 4, the quantities q0 ;and ql, d•fincd as the slit'ovikcl.

prol)aIbilities of a target attacked by a sinjgle uninter eepted weapon
;and a single intercepted weaplen, respectively, wec inttroducoee.

SPREKiOUS PC, -QJ

I 15 I L A'; A
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Both qO and ql were assumed to be constants known to the offense

and the defense. In this chapter, qo is often regarded as a variable,

denoted by q0 (i), dependent upon the target being attacked. The

reason for permitting q0 to vary is twofold: iP targets are to have

varying values, there is usually no additional mathematical diffi-
culty in permitting their other properties to vary, and it is reason-
able that targets of different values have different vulnerabilities.
For instance, a single unintercepted weapon will ordinarily destroy
a much larger fraction of a city of 50,000 than a city of 1,000,000
population.

Because q, - qO p p(1-q 0 ), where p is the defensive missile

kill probability, it is clear that q also depends upon the targset

attacked, and therelore is denoted by q1 (i). Note that
1 - ql(i) q (i) 0.

The expected value surviving of a single target attacked by
a. weapons and defended by di missiles is

iin(ai,di) nia (O,a.-di
E(i) = viql(i) ioa, ,a

and the expected value surviving of the group of targets is

T
E(V)

1=1

The defense wishes to maximize E(V) and the offense wishes to
minimize E(V) subject to their respective stockpile constraints,

a.
A and 1). 11 theire is no defense, E(i) - iq(i)

The above criterion imlplies that only one-on-one missile
engagements are al1 wed. Act-",-.- none o± he optimization
methods introduced in this cha,. Lse this criterion in the above
form. In Secti,, s 5.2.1-5.3.2, th,, 1oire general crilterion
F(i) = Ei ) is introduced; in Sections 5.4.1-5.4.2, a variant of

E(i) eliminating the awkward exponents is defined; in Sections
5.5.1-5.6.4, the above model is specialized by assuming q. = 0
and ql = 1.

As mighi. b. anticipated, it is considerably miore difficult to
specify optimumn offense and defense strategies tor a group) of tar- -1
gets of different value than it was for a group of targets of identi-
cal value. In general, the approaches that have been develop)edi
lead to approximate answers rather than exact ones. It is not al-
wax'' possible to prove that a given procedure wil! lead to the true

.4

. , i I I i I I I I I I I I
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optimum strategies; the reader is cautioned against an uncritical
acceptance of the results.

5.1 OFFENSE ALLOCATION TO A GROUP OF TARGETS IN THE

NO-DEFENSE CASE

Before examining more complicated models, it is worth con-
sidering the problem of optimum offensive allocation against a
group of undefended targets having different values and different

probabilities of kill. The offense wishes to allocate an integer
valued set of weapons (ala 2 ,... ,aT) so that the expected value

saved of the group of targets,

T T a

E(V) LE(i) viq0 (i) 1
i 1 i=1

will be minimized, subject to the condition that a.i 0 and that he
use no more weapons than are in his stockpile:

T

ai= A

This problem has been recognized by missile systt.n analysts
for some time, and both exact and approximate solutions are avail-
able. It can be formulated as a transportation problem and solved
by straightforward linear programming methods, as is done in den
Broeder, Ellison and Emerling (1959), or it may be solved using
an iterative procedure given by Manne (1958).

Both of the above methods yield integral answers, but require
the use of a digital computer. If the number of weapons, A, is
large with respect to the number cf targets, T, somewhat simpler
approximation methods can be used which yield nonintegral values
for the ai. A method using Lagrange multipliers is presented by

Lemus and David (1963) and with more rigor by McGill (1970). A
Specifically, the offensive missile allocations are given as a func-
tion of the Lagrange multiplier, x:

*A

ai(A) =log (- /vi log qo(i)),/log qo(i)

The value of A is chosen (by trial and error, if necessary) to make
.* *

the sum of the a (x) equal to A. If any of the individual a. art, negýa-
1 1

tire, these targets are eliminated from consideration (they are not
wort•h wasting offensive weapons on) and the process repeated on
the reduced set.
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Eventually one arrives at a set of positive ai which are then

rounded up or down to integer values. Dym and Schwartz (1969)
have partially justified this heuristic procedure by showing that
when all the q0 (i) are equal, the optimal integer solution is attain-

able from the optimal continuous solution by a rounding procedure
based on the fractional part of the continuous solution. In fact,
when the q0 (i) are equal, the problem becomes identical to that of

Section 3.2.4.

Danskin (1967) obtains an approximate solution to the alloca-
tion problem by a slightly different approach. Specifically, lie
minimizes the function

T T

E (V) E (i) vi e xp (7 b, Iii~l i=1

subject to the constraints ai 0, >a= A. Here, the term q0(i)

has been replaced by the exponential for analytic convenience. The
constant b. takes into account the fact that targets of different
value have'different resistances to destruction; q0 (i) = exp(-bl).

To solve this problem, Danskin first proves a lemma which
he attributes to the physicist J. Willard Gibbs:

Suppose (ai = aI, i -12, . . . ,T) maximizes

T

the function fi(ai) subject to the side
i=1

conditions Ža. - A, a 0. Suppose the f

arc all differentiable. Then there exists

a conscant ), such that .'. (a =) if a. 0
* 1 1

and f (a*) • if a* = 0.

In other words, the optimizing offense Utral Ny has the property

that the slop:i, (A llic various fi(a. ) with posiix e allocations are

all equal - the "niarinal utility" principle in economics. The
Gibb• :i minia is related hoth to the Lagrang.,e multiplier principle
and the Kuhn-Tucker conditions in the theoi-y ol nmatlhematical
progranmming.

Note that this lemma exhibits a propert3, of optimam st:riltu-
gies; however, it does not say that any strateg-, having thtis
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property is therefore an optimal one. However, if there is only
one strategy having the property, and the maximum is known to
exist, then the strategy in question is indeed the maximizing one.
(Of course it may t:e possible to determine in advance that the so-
lution must be unique, for example if the functions fi are convex.)

Danskin uses this fact to obtain the optimal continuous offense al-
location for undefended targets. He proves that the offense attacks
a target with

"- 1 L 1

weapons if vi ) >, and %,ith ai = 0 weapons if v. b. -i The valuewe p1 f ii-i i "

of the constant X is dctermined by means of the constraint equation*

Eai -A, using trial-and-error procedures. In short, the criterion
for attacking or not attacking a target is given by the product v b.:

the higher this value, the more worthwhile it is for the offense to
attack it.

In Chapter VI of his book, Danskin (1967)' generalizes this
method of allocating weapons to undefeadedL targets. The offense
is no longer restricted to attacking with a single stockpile of weap-
ons having a specific yield; instead, he has W stockpiles of weapons,
each with its own distinct yield. How should all these weapons be
allocated to the targets to minimize the expected value surviving?

This problem is difficult to solve in general; Danskin outlines
a method of solution for the following special case. Assume that
the ith target is destroyed if a wveapon from the ith stockpile lands
within a distance R and is undcmaged otherwise; assume also that

weapons from the jth stockpile hax e an impact-point probability
clensit function that is circular Gaussian, centered on the target I2 2 2
with variance C2Y (. Let ai denote tihe n1ll!'rb(?l of wteaputns

from the jth stockpile allocated to the ith targzct, and let the stock-

pile sizes be Aj. Finally, let aijA., = f 'j. The problem is to find -

that set of f i = 1,2, , T and j = 1,2, ,W, which minimizes

the surviving value

T WX

E (V) z i v1 x])p fijA J11~ "2

T
subject to the constraints f 1, 1,2, .. ,W.
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The solution is carried out iteratively, adding one weapon
stockpile at a time. However, the solution is much simplified if

the quantity h j = A'R2 ,72 is separable: that is, if hij can be

factored into the .rm f(i)g(j). Fortunately, this is the case for one
situation that is very plausible physically, na.Liely if the squared

distance R.2 is given by the formula 1)..2/3, where b. is a functionij ' 1 1
of the resistance to destruction of the ith target, and Y. is the

yield of a weapon from the jth stockpile. Details of the separable
solution are given on pp. 104-5 of Danskin (1967).

It is worth noting that Danskin's allocation of different weapon
types against a set of undefended targets can sometimes be used to
find the allocation of a single weapon type against a set of defended
targets. Specifically, assume that the defense has D missiles and
the offense has A > D weapons available. Assume also that the
offense assigns weapons to targets one at a time, and the defense
assigns one missile apiece to the first D weapons which arrive.
The first D weapons can be regarded as unengaged weapons with a
reduced lethal radius (corresponding to a smaller probability of
target kill); the final A - D weapons have their full lethal radius.
In short, Danskin's method can be used to determine how the first
D (engaged) weapons and the final A - D (unengaged) weapons should
be allocated among targets having different hardnesses and values.
This assumes that the resulting fractional alLcations can be inter-
preted meaningfully. Note that if one demands that allocations be
integral, this problem is the unequal-value analog of the problem
of Section 4.6.2. Burr and Graham (1970) conjecture that a result
similar to theirs may hold for the unequal-value case; but to
prove it is likely to be aifficult. In any case, dynamic programming
coudd bc applied to the problem.

5.2 TWO GENERAL TECHNIQUES FOR ONE-SIDED ALLOCATION

PA{OBLEMS

The problenm analyzed in the preceding section is an example
of a one-sided allocation problem. For a specific defense, it is
frequently not difficult to determine the optimum offense allocation,
and for a specific offense, it is frequently not difficult to determine
the optimum defense allocation, since these are effectively one-
sided problems. This section introduces two general techniques
suitable for such problems - dynamic programming and Lagrangc
multipliers. Note that the defense-last move and offense-last-
move allocations introduced in Ciapter 4 are not examples of one-
sided allocation problems. A one-sided allocation technique can-
not determine the best defensive allocation when the offense has
the last move: it can only determine the best defense stratci,,y
to counter a specific offense strategy.
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5.2.1 Dynamic Programnming

Tile following description of dynamic programming is adapted
from Bellman and Dreyfus (1962) and Young (1965). The methodol-
og" will be presented as the defense problem of maximizing the ex-
pected value saved against a given offense; the corresponding of-
fense problem is similarly formulated. Let E(i,di) be an arbitrary
function denoting the expected value saved at the ith target if a
defense di is allocated to it. It is convenient to generalize the con-

straint equation slightly. Let the cost of a defense missile allocated
to the ith target be ci, and assume that one can spend no more than

C on defense missiles:

T

Z cidi ': C

Note that when all c. 1, this reduces to the usual stockpile
constraint. 1

Dynamic programming solves the problem of maximizing
ŽE(i,d.)d subject to c idli : C by imbedding it in a two-dimensional

family (k,R) of maximizations and solving these maximizations by
recursive methods. Specifically, maximize

K :

E E(i,di E EK i~dJ K 1,2, ... ,T

subject to the c.onstiraints

K
ii--

Let max E K(i di) be denoted by hK(1 t . The successive maximiza-

tion problemis can be solved by the recursive equation

1. (R) max l(K, ,C d ,

K 0-C d ' R dK "-1 ( K
K K- I I
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In other words, one first determines h1 (R) for 0 _ R C;

then one uses these maximizations to determine h2 (R) for 0 < R!< C;

and so on until one finally obtains hT(C) and the associated d. . To

carry this out usually requires the aid of a digital computer. It is
clear that if the c. are all integers, it is sufficient to calculate

i
hK(R) for integral values of R: R = 1(1)C. Young (1965) points out

that the computation time is strongly affected by the choice of the
ci values; in general, it is advantageous to make the greatest com-I!
nlo,, divisor of the ci as large as possible. Thus, c 100,

c2 = 300, c3 = 400 is much easier to work with than c - 104,

c2 = 301, c 3 = 397. In many missile allocation problems, the c.

can be set equal to unity.

It should be pointed out that dynamic programming cal be
applied to considerably more general problems. For instance, the

T

constraint can be replaced by E• c i(d where each ci is an arbi-

trarv function. i_ 1

5.2.2 Lagrange Multipliers

The use of Lagrange multipliers for solving one-sidecl al-
location problems is discussed in some detail by Everett (1963,
1965) and Charnes and Cooper (1965). Unlike the dynamic program-
muing method, the Lagrange multiplier method does not necessarily
lead to a maximizing defense allocation. However, it does guarar:-
tee that if any allocation at all is found, it will maximize the ex-
pected value of targets saved.

As before, let the cost of a defensive missile allocated to
the ith target be ci, and assume that one can spend no more than C

on defense missiles:

T

-- cidi j7 C
isi

Let E(i,di) be an arbitrary function denoting;. the expected valuel

saved at the ith target if a defense di is allocated to it. The prob-

lem is to maximize >E(i,d i subject to Ecidi -- C.

The following obvious but powerful lemma is a special case
()f Everett's main theon em concerning La,,ran. e ,multipeli-rs
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Let X denote a positive real number.

If (dl,d, ... ,dT) maximizes EE(i,di) - •3cidi

over all (dl,d2 , ... ,dT), then (d,d*, ... ,dT)

maximizes ŽE(i,di) over those (dl,d ,dT)
<" d*

such that 'Ecdi ; C*, where C* = Eci d

In other words, if an unconstrained maximum of the Lagrangian
EE(i,di) -X.Cei di can be found, then the maximizing

d d ,d ) is also a solution to the constrained maximization

problem. The unconstrained maximum might be found, for example,by differentiating the Lagrangian with respect to the di, setting

these equations equal to zero, and solving for di. However, the

differentiability of the Lagrangian is not a necessary requirement:
all that is required is that it be possible to maximize the Lagrang-
ian, by whatever means.

Often, the situation of interest in this chapter is that in which
the di are restricted to be integers. The above lemina can be ap-

plied to this case either by making E(i,d) a step function with the
jumps at integral values, or by adding to the statement of the above
lemma that the di are everywhere restricted to be integers. These
two ways of viewing the situation are mathematically equivalent,
but the latter is the more straightforward and will be the one used.

What value of A should be taken? In general, different values
of A lead to different resource levels, C, and therefore it is neces-
sary to solve the Lagrangian for various N, trying to find one such

that vc.d. =C*,I 1
If T is at all large, one might expect the many combinatorial

possibilities to be a major stumbling-block in applying the Lagrang-
ian method. However, the overall maximization can be 'tchiL ved on
a target-by-target basis; that is, it is sufficient to maximize each
function E(i,di) - kcidi separately, Of course, one must use the

same value of X in each of the T maximizations. If the Lagrangian
for each target has been obtained, then the lemina guarantees that
the result is a global maximum to the overall mroblem.

The primary difficulty with the Lagrangian iiethod is thc
fact that in general it leads to solutions for certain isolated values
ot the resource level, C. If both C- and the maximnumll "E(i,d*
are plotted as a function of ,, the curves resemble an 1rl',i.,ar
staircase. Each leve lpa rt ()f the staircase c((rresl(nds to a t _-ivcn

allocation (d 1,d2 , .... ,d-.) the next step corresponds to an alloca-
1 2

tionl inl which one or nio'ge of the d. have been inc reaýed.
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If the staircase steps are small, the allocation corresponding
to the actual stockpile constraint C, is either the true maximizing
strategy, or else is near enough to it for practical purposes. How-
ever, if the staircase steps are large, it will be a matter of luck
whether the resulting value of C* is close enough to the desired
value to be of use. Unfortunately, large jumps in C* represent the
case most likely to occur in practice. However, there are some
saving features. It can happen that some C* does come close to
the desired value, and in any case the two values on either side of
the desired C* give bounds on the solution. Moreover, it some- I
times may be convenient to find an approximate solution from a
nearby Lagrangian solution. Briefly, one perturbs the allocation

(dldi ... ,dT into d + E1 ,d2  .. ,dT -- Er using integer

so that " (d ±I.c. )!- C; Everett calls ' E the E-depth.
Sometimes, it is sufficient to subs itute strategies having a

small E-depth (say, less than five or so) into ZE(i,di) to locate a

larger expected value of targets saved corresponding to a larger
value of C. In short, the Lagrange method always yields a lowerbound to the optimum allocation, and further trial and error on the
Lagrangian will usually yield a better value.

5.3 GENERAL METHODS FOR CONSTRUCTING TWO-SIDED

OFFENSE-LAST-MOVE STRATEGIES
This section, and the two sections following, examine a variety

of methods for determining offense and defense strategies when the
offense has the last move - that is, can make his own allocation
after observing the defense allocation. As mentioned earlier, a
variety of different criteria of loss have been used in order to
make this difficult problem more tractable.

5.3.1 A Lagrangian Approach to Max-Min Problems

Pugh (1964) uses an arbitrary criterion E(i,aicdi; unfortu-

nately, his heuristic method gives incorrect defensive allocations
(in general), but often gives correct offensive allocations in re-
sponse to the resulting defense allocations. However, Pugh is able
to calcidate approximate upper and lower bounds for the expected
value of targets saved if optimum strategies are used by both
sides. If the upper and lower bounds are close to each other, then
Pugh's strategies (which correspond to the lower bound in terms of
expected value of targets saved) can be used with assurance that
they are approximately optim.'-m.

Specifically, let E(i,aid i ) denote the expected value saved at
the ith target if it is defended by di missiles and attacked by ai

weap)ons. Assume also that the total weapon stockpile is A and the
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defensive missile stockpile is D. If the offense can allocate weapons
after observing the defensive allocation of missiles to targets, then
the expected value saved is given by

T

E*(V) = max minZ E(i,ai,di)
d a i-1

where the maximum is taken over all defense strategies such that
Idi D, and the minimum over all offense strategies such that

Zai < A.

For any given defense strategy, the Lagrangian method intro-
duced in the preceding section will give a bound on the optimum of-

fensestrateg-y (a1a 2 .... aT), In other words, it is not difficult

to obtain a lower bound to the expected valuej saved, E* (V). Pugh
suggests using the Lagrangian method to obtain both offense and
defense strategies. Specifically he introduces the function

L(•,.V max mraii E (aia,di) - di + , Ead a il

For any assumed value of X and *,e it is not in general difficudt to
find an unconstrained maximin of the bracketed expression, since
the maximin can be calculated on a target-by-target basis, just as
in the preceding section. Difficulty will be encountered only when
ai and di can range over a rither large set of values. By trial and

error, one may be able to find that (,N,w) pair which leads to a mina-
mizing (al,a 2 , and a maximizing (d*,d 2 , . . dT) such that
'd. = D and '2a= A. Pugh proposes that these strategies be taken

as the optimum strategies in the original problem. Of course, it is
cven less likely than in the one-sided case that one can find such
x and w.

Even if such A and 1c can be found, there is no mathematical
justification for this procedure. Although the offensive allocation
that results will be an optimal response to the resudting defensive
allocation, it is possible to construct examples in which the defens-
ive allocation is not optimal. (However, this does lead to 't lower
bound on the expected value saved, E*((V), since the offensive alloca-
tion is optimal.)

Nevertheles., Pugh observes that in many practical problemns
and simple trial cases the strategies obtained by the Lagranwian
turned out to be correct. For the missile analyst who wishes more
than empirical justification, Pugh introduces a method for

Iy
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calculating approximate upper and lower bounds to the expected
value saved, E*(V), when the correct strategies are used. If the
difference between these bounds is small then the use of the
Lagrangian strategies (which lead to the lower bound of E* (V)) is
practicable. It seems plausible that the difference will be small
whenever one has many targets of different values; a precise
statement of such a criterion would be useful to have.

A lower bound to E*(V) is given 1 y ZE(i,ai,d) - A0 di

+ ,0 Ea 1 , where Waa ,d,d 2 , .. is a rnaximin

solution to the Lagrangian, and Ed = D, Zai = A. (If t hese con-

straints cannot be satisfied using the Lagrangian approach, they,
too, must be bounded.) An upper bound to E*(V) is somewhat more
tedious to calculate, as it involves finding maximin solutions to the
Lagrangian for other values of X and w (leading to strategies with
weapon stockpiles not equal to D). For example, assume that one

has found the maximin solution (Xl,) 1,aC , a2 , . .. ,aTd,dId 2,... ,d)T

to the Lagrangian, and that ',a. - A', =d U. If1 A 1 d D.I

Ei.aidi) 1 (A-A') ."'1(D-D') E Eia' id )

then Pugh shows that one can eliminate a range of X, X1  X A • A 1 ,

where k1 substituted for x in the above equation changes the in-

equality. If there are enough different Lagrangian solutions avail-
able, Pugh claims that only a small region of X in the vicinity of
X0 will not be eliminated - say, XL :S X0 •- 1H' One can determine

an upper bound for E*(V): the maximum va l ue of L(Ap") in the
region XL -S X • xA, L) = W0 .

Note that there is no guarantee that this method will yield
reasonably close upper and lower bounds to E*(V), no matter how
many maximin solutions to the Lagrangian are calculated. Unfor-
tunately, one does not know whether Pugh's method will succeed or
fail until after considerable work has been done.

There exist cases in which the situation is more satisfactory.
Penn (1971) considers such a case; see Section 5.6.4 of this mono-
graph for details. Pearsall (1971) considers the possibility of
bounding the solution of general max-min or min-max problems of
the above sort by arbitrarily introducing mixed strategies for the
offense, retaining the Lagrangian approach. This transformed
problem may still not have a satisfactory solution, but Pearsall
derives a set of complicated conditions under which it does. Un-
fortunately, the details are too intricate to give here.

, , i l I i I II l I]
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5 .3.2 A Dynamic Programming Approach to Max-Mmi Problems

Pugh attempted to apply the method of Lagrange multipliers I
to derive optimum offense and defense strategies in the offense- -
last-move problem. In contrast, Randolph and Swinson (1969) apply I
the method of dynamic programming to this problem. It is not too
surprising to learn that they, like Pugh, run into fundamental mathe-
matical difficulties; dynamic programming can no more be rigor-
ously used than Lagrange multipliers. Instead, they end up by de-
riving upper and lower bounds to the expected value saved.

Specifically, Randolph and Swinson form the dynamic program-
nuing recursion relation

ci(A,D) = max min {E (i,ai,d c.(A-aiD-di)}
0(_ai --A 05d die '1D

Starting with i equal to unity, one solves iteratively for the opti-

mizing values al,dl,a2 ,d2 ,... ad and the corresponding ci(A,D).One might be tempted to interpret ci(A,D) in the following way: no

matter what the policy might be for the last T - i pairs (aidi), the
policy over the first i pa1irs (aidi) will be maximin. However, this

is not necessarily true for i - 3; in fact, it is possible to obtain
different values of ci(A,D) for different permutations of the targets.

The difficulty, of course, occurs because insufficient information is
stored in the backwards induction process of dynamic programming.
In fact, the final cT(A,D) obtained by this iteration will be only an

upper bound to the expected value of the total engagement, E*(V).
On the other hand, Randolph and Swinson show that if one

adopts the offensive allocation aderived by this proc-

ess, and then uses dynamic programming to determine that defens-
ive allocation (d,,d2, ..,d') corresponding to this nonoptimal of-
fensive allocation) then

T

E(V) = min E i a ,dl
a il

is a lower bound to the expected value E*(V). To solve tho offense-
last-move problem, then, Randolph and Swinson suggest calculating
(C,r(A,D), E'(V)') for various random permutations of the targets,
and stopl)ing when the minimunm cT(A,1)) is acceptably near the
maximum E'(V). It is hard to say how many permutations need be

ILE
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selected to obtain a given accuracy; the authors demonstrate in a
three-target problem (for which there exist only three different
permutations to be tried) that miii cT(A,D) is about 0.3 percent above
max E'(V).

There is a surprising philosophical similarity between Pugh
on the one hand and Randolph and Swinson on the other. Both lead
to upper and lower bounds bracketing the true E*(V); the quality of
the results (i.e., the speed of convergence) is in general unknown
for either one. In general, it is probably more worthwhile to seek
more explicit optimization methods based on specific properties of
E(i,ai,di). This will be the approach taken in the next two sections.

5.4 TWO-SIDED OFFENSE-LAST-MOVE STRATEGIES USING A

SPECIAL PAYOFF FUNCTION

In Pugh (1964), the expected value surviving of a group of
targets was specified only in general terms: ZEU,aiad). It seems

reasonable to expect that at least some of the mathematical diffi-
culties encountered by Pugh might be avoided by resLtricting oneself
to explicit E(i,ai1 ,d. One such function was partially defined at the

beginning of this chapter:

niin(ai,di . nax(0 a - di

E(i) = v iq (i1 q o(i) i

where q0 (i) is the probability of target survival (or expected fraction

of target surviving) against an unengaged weapon directed against
it, and ql(i) is tie analogous probability against an engaged weapon.

Both are dependent on the target considered and require further
specification.

5.4.1 A Partial Solution in an Idealized Case

Unfortunately, it is quite difficult analytically to handle expon-
ents of the form given above. To get around this difficulty, one can

approximate the actual defense by an idealized defense in which each
offensive weapon is intercepted by d i'ai defensive missiles. Be-
cause d.i'a. is in general not an integer, it is ccnveiieit to express

E(W in terms of exponentials rather than powers of q.i(:

a. a.

E(i) v, (I - si exp (-tid a; = viu.

The term exp(-tid Ia.) is the probability that an individual offeus-

ive weapon penetrates the defense: t. is related to the defensive
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missile reliability pi by (1-pi) = exp(-ti). The term si is the proba-

bilitv that an unintercepted weapon will destroy the target (that is,
q0 (i)). The quantity in parentheses (denoted by ui) is the probability

that the target survives an attack of one weapon; this is raised to a
power to yield the probability that it survives an attack by a.i
weapons.

The problem to be solved can now be stated quite simply.
Assume that the offense weapon stockpile is A and the defensive
missile stockpile is D. If the offense can allocate weapons after
observing the defensive allocation of missiles to targets, the
expected value of targets saved is given by

T

E*(V) = rax min• E(i)
d a i=l

where the maximum is taken over all defense strategies such that
"2d. < D, and the minimum over all offense strategies such that1

2ai 7 A. What offense strategy (aI,a, ... ,a.T) and defense strategy

dd2,... ,dT) yields E*(V)?

Danskin (1966, 1967) does not attempt to find the optimizing
sLrategies; apparently this is a very difficult analytic problem. In-
stead, he considers a more restricted problem - that of obtaining
partial criteria for deciding whether or not a target should be de-
fended at all. He introduces two formulas:

C =v 1 log 1
1-si'

t.s.
Di=- 1 1 1 1

1-si ) log T - s

For each target, the number-pair (Ci,Di) is readily calculated.

Danskin proves the following lemma:

Assume that the ith target is defended in an optimum strategy.

1. If C. --- Ci and Dj :-- Di, the jth target will also be de-
fended in the optimum strategy.

2. IfC. C. and D Di, the jth target may or may not be

defended in the optimum strategy; if it is not defended,
the optimum attack strategy hits both targets i and j.
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3. If C. < C and D.j Di, the jth target may or may not be

defended in the optimum strategy,: if it is not defended,
the optimum attack strategy hits target i but not target j.

If C. < Ci and D. <• Di, no conclusion can be drawn. Note that

if the Ci and Di are ordered in the same way, only the first conclu-

sion applies; that is, the optimum defense is one in which all tar-
gets having values of Ci above a given constant C0 are defended.

This situation occurs if vi varies but si and ti are constant over tar-

gets, or if ti varies but si and vi are constant over targets.

5.4.2 An Approximate Solution in :' Limiting Case

Obviously, Danskin's result is not of much use to the missile
defense designer; he does not know how much defense to assign to
each target. Perkins (1961), however, is able to determine an ap-
proximation to the optimum defense and offense strategies yielding
E*(V). He succeeds in expressing the solution in closed form only
in a limiting situation - when the ratios A/D and A/T are both
quite large. In addition, he allows fractional allocations. All tar-

gets must be attacked quite heavily; to be specific, a1 must exceed

ai°'where a. is the solution to the equation

a9d - 2 - ia d i

:ai di=di

a =a.
, 0

If any of the offensive allocations a. are less than ao, then it will

pay the offense to borrow weapons from other targets (or, if such
* 0

borrowing lowers other a. below a refraining from attacking some
targets) in order to build the attack up to ai. Discontinuities such

as these in the offense strategy cause the closed-form solution of
Perkins to break down.

Perkins first proves that defense and offense allocations are

always proportional to each other in the closed form solution:

d1!a1 d2/a2 d.. T/aT =D/A

This being so, it is sufficient to find the offense strategy as a func-

tion of vi. For the ith target, the offense assigns ai weapons:
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ai =logeC - '-ilo'eui )),logeu,

where u. is the probability that the target survives an attack of one -

weapon, defined earlier as (1 - s. exp(-tid. /a.)). (Perkins actually

derives the offensive allocation for an arbitrary function fi(di "'a.)

instead of the specific exponential exp(-tidi./ai).) Note that the ratio
di "a. must be replaced by D/A in order to compute ui. The constant

C is found with the aid of the offensive stockpile constraint A:

T

A S'log (-vlog u. /log u.
logeC = i=

loC iE (1/,lOgeU. 9
e T

i-l

Also, Perkins shows that

T T
a

E*(V) 2  v 1ul C 1 (-logeUi)
i=l i=i -

Perkins presents a lengthy scheme for insuring that a valid
solution is obtained; the reader is referred to his paper for details.
To determine whether or not the closed-form solution given above*

is valid, one first observes whether or not any of the a. are nega-
1

tive. If so, these targets are eliminated from the set (that is they
are left undefended) and the closed-form solution is derived for the
remaining targets. When all a. are positive, a final check is neces-

i
sary. The number of offensive weapons assigned to the ith target,
ai, must satisfy the following inequality (calculated from equations

(38', (24) and (22) in Perkins):

a logeu u - I td uui. /u

If this inequality holds for all i such that ai > 0, then the closed-
form solution is valid. When this inequality does not hold, further

= (more complicated) checks are required.

IN
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5.5 TWO-SIDED OFFENSE-LAST-MOVE STRATEGIES FOR

RELIABLE MISSILES

In this section, the expression giving the expected value of
targets saved is drastically simplified. Assume that an uninter-
cepted offensive weapon destroys the target at which it is aimed
with probability p, and that an intercepted offensive weapon is itself
destroyed with probability one. All engagements are therefore one-
on-one, and

mnax(O,ai-di
E(il vi(t-p)

The expected value saved of the group of targets is

T

E(V) =ZE(i)
i1l

5.5.1 A Lagrangian Approach to a Specific Max-Min Problem

Eisen (1967, attempts to employ the heuristic Lagrangian
appioach of Pugh (1964), discussed in Section 5.3.1, to find plausible
solutions of the above problem (fractional allocations hoing per-
mitted). Specifically, he tries to find the unconstrained (except for
the obvious requirement that all d. and ai be nonnegativeO max-ruin

max ruin (E(i) - xdi ai
d. a.

Unfortunately, his analysis is incomplete, leading to a restricted
set of solutions; therefore, a complete solution will be sketched
below

It is fairly easy to determine the inner minimization. Set

S=-log e -p l

Tt can be seen that t !5 vi in all cases. Dropping the subscript i for

convenience and setting E =E(i), the inner minimization can (after)
some algebra and differential calculus) bc written in two forms:

1. min(E - Xcd xa) = v - Ad if Le - vx or if d i (v-t) /',
a

in which case a 0 yields the minimum.
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2. mn(E A + xa) t - Nd + wd if w vx and d -
a

in which case a = d - log (.'vx'x -'" t

If , - vx and d = (v-t) /ý, the two values are the same, and the of-
fense can select either a = 0 or a = d - log e (/vx)./x at will.

From the above, one sees that the value of the inner minimum
is a piecewise linear function of d with at most two pieces. This
fact makes it fairly easy to find the optimizing values of d and a for
any X and c_,. There are three cases:

1. N <' e. Here d = (v-t)iw, provided c, . vx. One may
choose a to be either 0 or d - log e(.e/vx'./x N(v/, - (1/x)
at will. If .o ý vx, d = a = 0.

2. ', = .,. Here one may choose any d in the range

0 - d - (v-t),/w, provided w . vx. If d = (v-t) /.,, one
may again choose a to be either 0 or (v./) - (l/x) at will.
If d < (v-t)i.", then a = d - log e(ý/vx) !x. As before, if
w_ xvx, d =-a =0.

3. X w,. In this case d = 0 always, and
a = max(0, -loge(,L/vx) /x).

These solutions give the offense and defense allocations at a single
target of value v. As noted in earlier sections, one attempts to
select X and w. by trial and error so that 12ai = A, d i = D.

Eisen's solution corresponds to case (1) with the additional
restriction that a = (v;%w) - (1/x) whenever possible. It is of inter-
est that x functions only as a switch among the three cases. If one
wishes to allocate missiles and weapons from a pair of stockpiles
A and D, case (2) gives the widest range of possibilities, since (2)
includes the allocations of (1), and (3) is trivial. The fact that d at
a target can often be chosen anywhere in some range, even for 0'
fixed, makes it like±ly that it will often be possible to match A and D
rather well by taking A = x. It would be of great interest to know
how the results of this heuristic method compare with the actual
constrained overall maximin.

5.5.2 A Special Case: Reliable Weapons
Suppose now that an unintercepted offensive weapon destroys

the target at which it is aimed with probability one, and that an in-
tercepted weapon is destroyed with probability onp. Then

E(i) =vi if ai 7ýd I
=0 if a "1 d.
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The expected value surviving of the group of targets is

T

E(V) ZE (i)
i=1

The problem to be solved is the following. Assume that the
offensive weapon stockpile is A and the defensive missile stockpile
is D. If the offense can allocate weapons after observing the de-
fensive allocaticn of missiles to targets, the expected value of tar-
gets saved is given by

T

E (V) max mrinm E(
whr h aiu stknd a izl ]

where the ma-ximum is taken over all defense strategies such that
ýdi D, and the minimum over all offense strategies such that
•ai A. What offense strategy al,a2,...,a* and defense

1 * *~ ~~ a, 2 , T n ees
strategy (d1,d . .,dT) yields E*(V)?

This problem has been treated by van Lint and Pollak (1972).
Specifically, they assume an offensive stockpile size normalized to
unity and a defensive stockpile size of H =D/A. The admissible _

offense strategies are real numbers (al,a2 , ... ,a) such that
"_a. 1; the admissible defense strategies are real numbers such

that di = Di'A. In an actual allocation, the a and di must, of course, -A
be integers; therefore. the strategies derived by van Lint and
Pollak are limiting ones. It is possible to estimate the error !n- A
volved when A and D are small: hence the results may be useful
then, too.

Using techniques from the theory of linear equations and
number theory, van Lint and Pollak show that there are certain
canonical defense strategies corresponding to defense stockpiles
IIIi .... ,HK If the actual defense stockpile size is H, the de-
fense can achieve the same expected target value saved by using i
only H. defensive missiles, where Hi • H <_ Hi. In other words,
it is possible to list the complete set of optimum offense and de-
fense strategies for 1 h DcmA -l T; when Do/A optmT, a perfect de-
fense is possible, and when DA - 1, no defense iTa possible. The
offense strategy actually selected sometimes depends upon the
relative target values: however, it is an easy matter to chec -
through the admissible offense strategies to find that one which

minimizes the expected value of targets saved.

4
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The table below indicates all possible optimum defense and
offense strategies as a function of H = D/A, for targets of arbi-
trary value in groups of two through five. The targets are listed
in descending order of value: v 2- v3N v4  v The defense

strategies are self-explanatory: the offense attacks the indicated
value points with enough force to overwhelm the defense there.
When there are two or more entries in the offense column, the of-
fense chooses the one that maximizes the value destroyed. When
two or more defense strategies are listed with a given D !A, the
defense chooses the one that minimizes the maximum value
destroyed.

Two Targets
Defense Strateg-,(d * Sa* D/A Value Destroyed

d ,d2 Required by Offense

(1,0) 1 v2

(1,1) 2 None

Three Targets

Defense Strategy
d * * *) D.'A Value Destroyed
1 2,3 Required by Offense

(1,0,0) 1 (v2,V3)

(1 /2,1/2,1/2) 3 /2 v1

(,,0) 2 v3

(1,1,1) 3 None

Four Targets

Defense Strategy
(d*d*d*d*) DA Value Destroyedd1 d2'd3'd Required by Offense

(1,0,0,0) 1 (v2 v3, V4)

(1/3,13,1/3, f1/3) 4/3 (%-1'v

(1/2,1/2,1./2,0) 3/2 (v I, v4)

(2/3,1/3,1/3,1/3) 5.,3 v 1 or (v2,v3)

(1/2,1/2,1/2,1//2) 2 "1
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Four Targets (continued)

Defense Strategy
D/A Value Destroyed

dRequired by Offense

(1,1,0,0) 2 (v3 ,v44

(1,1/2,1/2,1/2) 5/2 v2

(1,1,1,0) 3 4

(1,1,1,1) 4 None

Five Targets

Defense Strategy
* * * D/A Value Destroyed

(dYd ,d , d. , d1d2d3'4'5 Required by Offense

(1,0,0,0,0) 1 (v2 ,v 3 ,v 4 ,v5 )

(1/4,1/4,1/4,1/4,1/4) 5/4 (Vl,vv 3)

(1/3,1/3,1/3,1/3,0) 4/3 (vl,v 2,V5)

(2/5,2//5,1/5,1/5,1 /5) 7/5 (vlV2 ) or (vlV 3,v 4 )

(1/2,1/2,1/2,0,0) 3 ,/2 (v 1,v 4 ,v5)

(1/2,1/4,1/4,1/4,1/4) 3/2 (Vl ,v2 ) or (v2 ,v 3,v 4 )

(3/5,2/5,1/5,1/5,1/5) 8/5 (Vl ,v3 ) or (v2 ,v3 ,v4 )

(2/3,1/3,11/3,10) 5/3 (Vl1"5' or (v2 ,v 3,v 5 )

(1/3,1/3,1/3,1/3,1/3) 5/3 (v lv 2)

(3/4,1/4,1/4,1/4,1/4) 7/4 v1 or (v2,v 3 ,v 4)

(1/2,1/2,1/4,1/4,1/4) 7/4 (Vl,v 3 ) or (v3,v 4 ,v 5 )

(3/5,2/5,2/5,1/5,1/5) 9/5 (vl, 1 4 or (v2,v 3)

or (v2 ,v4 ,v5 )

(1,1,0,0,0) 2 (v3 , v4 ,v 5)

(1/2,1/2,1/2,1/2,0) 2 (vlVs5

(2/3,1/3,1/3,1/3,1/3) 2 v or (v2,v3)

Lt
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Five Targets (continued)

Defense Strategy
,d d d d * *• D/A Value Destroyed(d l'd2'd 3d 4'd 5,) Required by Offense

(3/4,1/2,1/2,1/4,1/4) 9,/4 v1 or (v2v

(1,1/3,1/3,1/3,1/3) 7/3 (v2 ,v3 )

(2 /3,2 /3,1/3,1/3,1/3) 7/3 V or (v3 ,v4

(1,1/2,1/2,1,/2,0) 5/2 (v2 , v5 )

(1 /2,1 /2,1/2,1/2,1/2) 5/2 v

(1,2/3,1,/3,1/3,1/3) 8/'3 v or (v3 ,v 4)

(1,1,1,0,0) 3 (v4 ,v5)

(1,1/2,1/2,1,/2,1./2) 3 '2

(1,1,1/2,1/2,1/2) 7/2 v3

(1,1,1,1,0) 4 v5

1,1,1,1,1) 5 None

Unfortunately, the number of combinatorial possibilities goes
up rapidly with the number of targets, so this approach is feasible
only for very small groups. It is also worth noting that the methods
of van Lint and Pollak produce all possible optimum defense strate-
gies, but in addition may produce some nonoptimum defense strate-
gies. Although none of the defense strategies in the above tables is
nonoptimum it can be demonstrated that (for example) the defense
strategy (2/3,2/3,2,/3,2,/3,1/3,1,/3,1/3), corresponding to D/A - 11/3,
is inferior to the defense strategy (1/2,1/2,1/2f1/2,12/2,1/2,1/2),
corresponding to D/A = 7/2, for all possible vectors (vl,V2 ,v3 ,v4 ,
v5 ,v 6 ,v 7 ).

An important practical criticism of the van Lint and Pollak
defense strategies is that they depend upon an exact knowledge of
the offensive stockpile size, A. It is clear from an examination of
the optimum defense strategies that if the offense has a small incre-

* ment of additional stockpile, he can change his strategy to a sub-
stantially better one.

It is not difficult to propose a much simpler defense strategy
which is not quite as good as the van Lint and Pollak one when the
offensive stockpile is known, but has essentially equivalent per-
formance if the stockpile is somewhat uncertain (say, to within 10
or 20 percent of some nominal value). One simply allocates defens-
ive missiles proportional to target value, so that the offense cannot
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obtain an' advantage in value de~stroyed per weapon expended by
attacking any suhset of the targets. This approach is developed in
more detail in Sectiji, 5.7.2.

5.6 OFFENSE AND I)DEFENSE IALLOCATION STRATEGIES I-

WHEN NEITHER SIDE KNOWVS TIlE OTHER'S ALLOCATION

The preceding three sections have all made the same basic
assumption: the offcnse is able to observe the defensive allocation
of missiles to ta'gets before nialing his own allocation of weapons
to targets (offense-last-move). This section, in contrast, examines
the much more difficult mathematical problem of determining opti-
mum offense and defense strategies in the (game-theoretic) case
when each side knows the other's total stockpile size but not his
allucation to tar!cets. Even for tie equal-valued target situation of
Chapter 4, this niodel proved quite difficult to analyze for arbitrary
values of q0 and ql, the survival probabilities of a target attacked
by a single unintercepted weapon and a single intercepted weapon,
respectively. Therefore, it is not surprising that the results pre-
sented in this section are especially fragmentary.

5.6.1 One Offensive Weapon, One Defensive Missile

On page 54 of his book, Dresher (1961) specializes the model
as follows: he assumes a group of T targets with values v v

v> V and offensive and defensive stockpiles of size unity
(A 1, D = 1). He assumes that q0 is equal to zero, but allows the

defensive missile to be unreliable; if p is the probability that the
defensive missile kills an offensive weapon, then q, = p. The de-
fense strategy consists of specifying the probability with which the
single missile is used to defend the ith target, and the offense
strategy is defined analogously. Let these strategies be denoted by
xi and Yi, respectively (2xi = 1, :yi= 1) and

W

Then Dresher shows that the optimum offense strategy is

=: l/viWt , i- t

Y 0it
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The optimum defense strategy is

1 P vi W t/ I
x; =0, i t

Here the quantity t is chosen to maximize the expression (t-p) AVWt*

It is striking that the offense probabilities are inversely propor-
tional to value whenever they are positive.

The expected value of targets destroyed (that is, the value of
the game) is given by (t-p) /Wt if both sides use optimum strategies.

5.6.2 Piecewise Linear Payoff Functions

On page 124 of his book, Dresher (1961) succeeds in general-
izing the solution to arbitrary stockpile sizes of A and D for which
A : D, but finds it necessary to set p equal to unity, in effect to
permit fractional allocations and also to introduce a somewhat
artificial payoff function:

T

V - E(V) = vi inax(0,ai - di )
i---1

In other words, the damage to a target is proportional to the excess
of offensive weapons assigned to it. This is reasonable, for in-
stance, when the target is so extensive that overlapping damage
rarely occurs. Interestingly, Dresher finds that the optim-umi of-
fensive strategy is to attack a single target with the entire stock-
pile, A; the defense allocates its missiles among the more valuable
targets, leaving the less valuable ones undefended.

In a related paper, Cooper and Restrepo (1967) show how the
optimum offense and defense strategies can be found when A - D,
p = 1 and the payoff function is

T
Expected gain for th, offense E Kia(ai'di

i=l1

where K.(ai,d.) = vi (a -di if a. "> di and K (ai,di = -ha. if a < d 1e i i 1
If h = 0, this payoff reduces to Dresher's payoff given above; the
second expression reflects a loss to the offense if his weapon ai-
location to a target is less than or equal to the defensive missile
allocation to the same target. Unfortunately, the computations re-
quired for the offense and defense strategies are rather extensive; :II
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Cooper and Restrepo work out the optimum strategies only for

(T-1) A -- D TA (T arbitrary) and for A - D ,- 2A (T = 3).

5.6.3 A Gamc-'lhcoretic Solution for Two Targets

The game-theoretic allocation problem for two targets of
arbitrary values of v1 and v2 has been completely analyzed, if

weapons on both sides are perfect, and if each side knows the
other's total stockpile (A for the offense, and D for the defense), I
but not how they are allocated among T targets. Let q0 be 0 and

q, be 1 - that is, a target is sa, ed if the defensive allocation is

greater than or equal to the offensive allocation, and totally de-stroyed if the offensive allocation exceeds tile defensive allocation.

It is more convenient to define the payoff in terms of expected tar-
gets lost instead of expected targets saved: _

E(V) =0 if a-d1 , a d2  ,

N= 2 if a: dl a2 d 2

v if a 1 >d 1 , a 2  d2 ,'

v1 if a >d 1 , a2 d2

In specifying the optimum defensive and offensive strategies and
the corresponding value of the game (the expected value of targets
lost), it is convenient to consider five cases: D = A - 1 (neither
side dominant), 2A - 1 Ž D > A (defense dominalt), D 7 2A (de-
fense overwhelming), D + 2 A -: 2D + 1 (offense dominant), and
2D ÷ 2 . A (offcnse overwhelming).

When D = A - 1, it is easy to obtain the optimum offense and
defense strategies. If v 1 = v2 , all strategies of both sides are

equivalent. If v2  1 v1 , the unique optimum offense strategy is to

allocate all A weapons to the more valuable target; all defense
strategies remain equivalent. The value of the game is
V = max(vl,v 2 )" the offense destroys the more valuable target.

When D _ 2A, any defense btrategy is optimum as long as A
or more defensive missiles are allocated to each target. All of-
iense strategies are equivalent, and the value of the game is V = 0.

When 2D ý 2 <_ A, any offense strategy is optimum as long as
D + 1 or more weapons are allocated to each target. All defense
strategies are equivalent, and the value of tile game is V - v V

in the remaining two cases, the optimum strategies become
more complicated. One can determine all optimal strategies, not
just one pair of them; but the analysis is tedious. One defines
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a set of extremal optimum defense strategies, each one of the
general form "allocate i missiles to the target of value Vl, and
the remaining D - i missiles to the target of value v2' with proba-
bi!ity x.'', where Ex. = 1. To distinguish among different extremal

strategies, superscripts can be used on the probabilities xi. (Ex-
trernal optimum offense strategies are defined analogously, with
probabilities denoted by yi.) Any optimum defense strategy can be
written as a convex linear combination of extremal optimum de-
fersc strategies: if p. = 1, then the defense strate allocating

missiles to the target of value v. with probability pjxý is opti-
I]

mum. Thus, it is sufficient to specify all extremal optimum strate-
gies corresponding to a given (D,A).

When 2A - 1 - D -_ A, the extremnal optimum defense strate-
gies can be characterized as follows. Each extremal optimum de-
fense strategy corresponds to a sequence M = (ml,m2,1... ,mK) of
integers such that 1-- m 1 • m2 4 .. . • 11 K R. It is not difficult

to show that there arc RýK(-1 such sequences. Here, K is the
smallest integer greater than or equal to (A+1)/(D-A+1), and
R = K(D-A+1) - A. For any sequence M, the corresponding ex-
tremal optimum defense strategy is that strategy which allocates
i(D-A+I) - m. missiles to the target with value v1 (and therefore
D - i(D-A+I) + in to the target with value v2) with probability

i-1 K-iVv1
____ 1 "2 i9 i --1P2,... K .

vK-I K-2 K-2 K-I
"2 1 "2 1 '2 14v

The extremal optimum offense strategies are defined analo-
gously. Each one corresponds to a sequence N = (n1 ,n 2 , ... ,nK) of

integers such that (D-A4 1 nI n2 ...11 R. It is not difficult to

show that there are D-A+K'R+I such sequences. For any se-
quence N, the corresponding extremal offense strategy is that
strategy which allocates i(D-A-. I) - ni weapons to the target with

value vI (and therefore A - i(D-A=1) ni weapons to the target

with value v2) with probability

II1
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,K-i i-I
1 2

K-I K-2K-2i 1,2, .. ,K
V2  +v v1 4- + V v2 + v 1

If both sides use extremal optimum strategies (or convex
linear combinations of extremal optimum strategies, which are
therefore also optimal), the expected value of targets lost (the
value of the game) is

v'+ VK- 3 + + VK 3 v+ vK-21v2 vK2 V1 +"2V 1 2 1

vK-I + VK V-2 K-2 K-i
2  1  2  +1V v2 +v1

where K is the smallest integer greater thaii or equal to
(A+1)/(D-A+1).

The following numerical example will illustrate the above
formulas. Let D = 9 and A = 6; then K = 2 and R = 2. There are
three possible (rnm,m 2 ) sequences: (1,1), (1,2) and (2,2). The cor-
responding three extremal optimum defense strategies are:

1. Allocate 3 missiles to vI with probability v2 /'(v 1 +v2 ),

Allocate 7 missiles to v1 with probability vl1/(v 1 +v2 ),

2. Allocate 3 missiles to v 1 with probability v2 /(Vl+V 2 ),
Allocate 6 missiles to vI with probability Vl/(21 v2 ).

3. Allocate 2 missiles to v1 with probability v21(v 1 +V2 ),

Allocate 6 missiles to v1 with probability v2/(v1 ÷+v2 ).

There are six possible (nl,n 2 ) sequences: (2,2), (2,3), (2,4), (3,3),

(3,4) and (4,4). The corresponding six cxtrcmal optimum offense
strategies are:

1. Allocate 6 weapons to v 1 with probability Vl/(Vl÷.V2 ),
Allocate 2 weapons to v 1 with probability v2 /(V1 -. v2 ).

2. Allocate 6 weapons to v 1 with probability vl!(Vl ÷-v2 ),

Allocate 1 weapon to v1 with probability v21(VN+v 2 ).

3. Allocate 6 weapons to v 1 with probability vl!/(vl+v2) ,

Allocate 0 weapons to v 1 with probability v2 /(vl+V\2 ).

4.Allocate 5 weapons to v1 with probability v1 2.(v 1 -4v 2 )'
4. Allocate 5 weapons to v 1 with probability v2I/(",1 jv 2 ),

Allocate I weapon to v with probability v2 /(v1 v2).
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5. Allocate 5 weapons to v1 with probability v! +v 11Allocate 0 weapons to v I with probability v 2 /(v 1 v2 ).-

6. Allocate 4 weapons to v1 with probability v1 /(v 1 V2 ),
Allocate 0 weapons to v with probability v2 /(V1+V2).

The value of the game is vl V2 !/(v1.÷.v 2).

When D .2 - A - 2D 4 1, the extremal optimum defense and
offense strategies can be defined in terms of those already intro-
duced for 2A - 1 -- D :e A. Specifically, set D = A - 2 and = D.
The extremal optimum defense strategies are obtained by substi-
tuting D and X into the extremal optimum offense strategy formula,
and the extremal optimum offense strategies are obtained by sub-
stituting D and X into the extremal optimum defense strategy form-
ula. The expected value of targets lost is then

V 1 2 +... v2 1
VL1+ V VL- + + " L- " +

2 ~ 1 2 ± 1 N2 1

where L is the smallest integer greater than or equal to
(D+I)/(A-D-l).

It should be noted that if one restricts oneself to the simpler
problem of finding just one optimal strategy for each side and the
value of the game, it should be possible to accomplish somewhat
more. Further, if one wishes merely to solve the game for some
specific choice of A, D and values of vi, one can expect to deal
with somewhat larger problems (say, five or more targets, depend-
ing on the sizes of A and D).

5.6.4 Targets Partitioned Into Homogeneous Classes
What can be done to determine offense and defense strategies

for larger numbers of targets of unequal value when q0 = 0 (soft
targets) and q, = 1 (reliable defensive missiles)? Penn (1971) uses
the method of Lagrange multipliers (as with Pugh's two-sided
offense-last-move strategies discussed in Section 5.3.1) to deter-
mine offense and defense preallocation strategies and the expected
value of targets lost (the value of thio game) for any number of tar-
gets of unequal value. Penn's stratogies suffer from the same
problem of implementation that Matheson's do, namely that, es-
pecially for small numbers of targets or weapons, the probability
densities called for may not be realizable. Alternatively, Penn's
strategies may be considered to have been determined under the
constraint that the expected levels of total resource utilization are
A and D, respectively. For this reason, his results differ some-
what fro..- the strategies derived for two targets In Section 5.6.3.
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Penn shows in his paper that for this modified allocation procedure
the Lagrange method does not generate spurious solutions (as it
did when applied by Pugh to a two-sided offense-last-move
strategy).

Penn's preallocation strategies are a generalization of the
Matheson strategies for q 0 = 0 and q, = 1 presented in Section

4.3.2. It will be recalled that Matheson's strategies are useful only
when the number of targets is large enough so that the real-valued
preallocation strategies can be reasonably approximated by actual
targets (for example, if 0.348 of the targets should be defended
with 3 missiles apiece, then 2 out of 6 targets are assigned 3 mis-
siles). In order to use Penn's strategies, one must have a large
number of targets of each value in order to make missile and
weapon assignments approxinating the underlying strategies. It
should be noted that this problem can be solved conveniently in a
specific case by means of linear programming. The technique is
the same as that which can be used on the other generalizations of
the Matheson problem discussed in Section 4.3.4.

The equations giving the offense and defense strategies and
the expected value of targets lost cannot be readily written in terms
of the offensive and defensive stockpiles, A and D. Instead, they
are given as functions of auxiliary quantities (Lagrange multipliers)
X and w. In order to find the strategies and payoff, one must first
calculate X and w by means of a search, given A, D and the target
values v 1 ,v 2 ,

Here a possible inconsistency arises. The formulas relating
A and D to X and Le depend upon whether the offense or the defense
is dominant; however, dominance is defined in terms of X and w.
It is possible that the offense dominant formulas may lead to X and
u values which specify defense dominance, or vice versa; however,
this is unlikely to arise unless one is quite near the boundary of
the two regions (in which case using the incorrect strategy won't
really matter).

The offense-dominant formulas for determining X and w, are

A 4 ( + ) ( -1,

vI

Note that the first equation is a function of x alone. The corres-
ponding defense-dominant formulas are A

A

A
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A • [vj /]([v1w] + 1)
j=l J •

n X-j=1 2 / j

Note that the second equation is a function of w alone. Once )X and
w have been determined, offense dominance is established if w < X,

-and defense dominance if w L- X.
Let x.(v.) denote the expected fraction of targets of value v.

that are defended by i missiles, and let yi(vj) denote the expected
fraction of targets of value v. that are attacked by j weapons. When
the offense is dominant, the preallocation strategies are

x./v. 0, J :./vj , 1,2, . .. , vj ] I

X0 (v3)=1 [v. /X] (w-/Vj

Yi (Vj) X/Vj , i= 1,2,...,[Vj/X],

Y[vjj/xl(Vi ):1" [v1/x]x/vj

The expected value of targets lost is

n

E (V) 2, l ["'x] ([V /'Xj + .
E (f ývj

When the defense is dominant, the preallocation strategies
are

xj(vj) =w/vj, i =0,1,..., [vj/w]- 1

X 0v/ ) =l- [ v /U,] (o/) vj

S~Yi(Vj) X'/vj , i = 1)2,. . [ j w

Y0 (Vj = /-v~W] (N/Vj)
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The expected value of targets lost is

n

j=l

These strategies are quite similar to the strategies of Section 4.3.2.

A short example may help clarify this procedure by attempt-
ing to apply it to the numerical example of Section 5.6.3. Let D = 9
and A = 6; assume that one has two targets with values of 1 and 3.
Then, using the defense dominant equations, one finds that w = 1/5
and X = 6/55; since w '> X, defense dominance is confirmed.

The offense strategy is

Y0 (l) = 5/Il, yi(l) 6/55 for i 1,2,...,5

Yo(3) 5/11, Yi(3 = 2/55 for i 1,2,...,15

The defense strategy is
x i(1) 11I/5f i OP 1, , ... ,4

xi(3 ) = 1/15, i = 0,1, ... ,14

The expected value of targets lost is 6/5. Note that these strate-
gies are not implementable and that the expected loss is somewhat
different from that derived in Section 5.6.3. This is hardly sur-
prising, since T, A and D are all so small. Goodrich (1970) has ex-
tended Penn's methodology to the case of hard targets (q0 "> 0).

5.7 DEFENSE STRATEGIES WHEN THE OFFENSIVE STOCKPILE

SIZE IS UNKNOWN

In the preceding sections, it was assumed that the defense al-
ways knows the stockpile size, A, of the offense (although not how
it will be allocated to individual targets). This section suggests
ways in which defensive missiles might be allocated if this infor-
mation is unavailable.

The performance of a defense strategy must be measured
against a range of possible attack sizes rather than a single attack
size. It seems reasonable to design a defense strategy so that the
expected value of targets destroyed is proportional to the (unknown)
attack size; if this is so, the offense has no chance of selecting a
favorable attack size which will maximize the expected value of
targets destroyed per weapon expended. This is an example of a
robust strategy as described earlier (Section 1.2). In general,
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there is no way of finding a strategy which yields a linear return
to the offense; however, approximately linear strategies can be
found.

5.7.1 Defense Strategy Assuming Offense-Last-Move

Assume that the allocation of defensive missiles to targets of
value ve,v 2 , ... vT can be observed by the offense before an allo-

cation of weapons to targets is made. The object of the defense is
to allocate di missiles to the ith target so that

S i max (v - E.(ia_,di))//a

the maximum expected value destroyed per weapon expended is as
small as possible. If fractional allocations are permitted, this can

be achieved by selecting (dd, d ..dT) such that S. = K at all de-
/ \12 'T T)

fended targets (di > 0) and Si - K at all undefended targets (dci A 01
The quantity K is adjusted by trial and error until 'di = D, the de-
fensive stockpile. I

It is conjectured that the allocations (d,dz, ... Id) and the

corresponding a,a2, ... ,aT) obtained by this method are quite

similar to the ones obtained by Pugh (1964) in Section 5.3.1, if one -

assumes an offensive stockpile 'a* = A. If the defense uses the I
above strategy in place of Pugh's max-min strategy, will it lose
more or less expected target value? It might appear that more
value will be lost b- ;use the information about A is not being
utilized; however, sirce Pugh's method is approximate, the above
procedure may lead to results that are better than Pugh's.

5.7.2 Defense Strategy When Neither Side Knows the Other's

Allocation

Assume that a set of targets of integral values vlV 2 ,., T

is being defended. Assume that each side allocates his missiles or
weapons to the targets in ignorance of the other side's allocation.
Assume that defensive missiles have perfect reliability - that is,
q1 ' the probability of an engaged weapon damaging a target, is zero.

Finally, assume that an unintercepted weapon damages exactly one
un t of target value; that is, it takes vi unintercepted weapons to

destroy totally a target of value vi. Although this linear damage

function is less realistic then an exponential one, the calculation
of target damage associated with a specific attack is much simpli-
fied. It is conjectured that the approximate linearity of the

-7T
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defensive strategies will not be much affected by using a more
realistic damage function.

One way to derive a defense strategy is to construct one
analogous to a strategy derived for equal-valued targets. In Section
4.3.2 it was stated that if q0 = 0 and q, = 1, and if d defensive mis-
siles per target are available, then if d is an integer, the optimum
defensive allocation assigns 0,1,2, ... ,2d-1 or 2d missiles to the
defense of a target, each with probability 1/(2d+l). If one has a
group of targets with different values, the analogous strategy is
obvious: If vi is an integer, asbign 0,1,2,..., 2 vi-1 or 2vi defense-

ive missiles to a target of value vi, each with probability 1,/( 2vl +1).
Note that this implies that one has a defensive stockpile of size

•vi D. For stockpile sizes D = K*vi, where K is an integer, one
can scale up the allocations proportionately: 0,1,2, ... ,2Kv -1 or
2Kv. defensive missiles assigned with probabilities 1./(2Kvi+1), or

1 1
0,K,2K, ... ,K(2v i-1) or 2Kvi defensive missiles assigned with prob-

abilities 1/( 2 vi+l). For intermediate values of D, various approxi-

mations to the allocations can be devised.

The following simple example shows how such a defense
strategy can be simultaneously realized for all targets. Assume
that one has three targets of values v 1 = 2, v2 = v 3 = 1 and a stock-
pile D of four defensive missiles. The 15 possible allocations of
missiles to targets (vlv 2 ,v 3 ) are listed below.

Probability Allocation Probability Allocation
P1  (4,0,0) P9  (0,2,2)

P2  (3,1,0) P1 0  (0,4,0)

P3  (3,0,1) p1l (0,0,4)

P4  (2,1,1) P1 2  (0,3,1)

P5  (2,0,2) P13  (0,0,3)

P6  (2,2,0) P14  (1,3,0)

P7  (1,2,1) P15  (1,0,3)

P8  (1,1,2)

How should one choose the p. so that p1 . 0, Epi 1, and so
that the allocation of missiles to individual targets have the pattern
specified above? To begin with, it is clear that P10 =P 1 l .... 1 P 15 =0,
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for these allocate three or more missiles to targets having a value
of one, and this is more than the maximum allowed. For the tar-
get of value vl, the pi must satisfy the following linear equations:

p1l=1/5

P2 +P 3  1/5

P4 + p5 +p 6  1/5

P7 +P 8 = 1/5

P9 = 1/5

For the target of value v the pi must satisfy the following
linear equations:

Pl +P 3 + p5 = 1/3

P2 + p4 + p8 = 1/3

P6 + P7 + P9 = 1/3

Finally, for the target of value v3 , the pi must satisfy the
following linear equations:

P1 +P 2 +p6 = 1/3P6

P3 +-p4 4p7 = 1/3

P5 + p8 + p9 = 1/3

This constrained set of linear equations can be solved by
Gaussian elimination to obtain

SPl=P1/5 P6 =1/15- P5

P2 =1/15 p 5 , P 1/15 +p 55

P3 -2/15- P5  P8 2/15 p 5

P4 =2/15 , P9=1/5
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where p5 can take on any value in the range 0 n p 5 - 1/15, In other

words, there are an infinite number of possible solutions to the
problem. In other problems, however, it may happen that no solu-
tion is possible.

The performance of this defensive strategy cannot be assessed
until one specifies the offensive strategy for each possible stock-
pile value A. Assume that the offense knows that the defense is
using this strategy; he will then allocate his weapons to targets in
such a way as to maximize the expected value of target destruction.
By considering all possible offensive allocations, it is not difficult
to discover the optimum allocation and the corresponding payoff for
each value of A:

Stockpile Allocation of Weapons Expected Value
Size to Targets Destroyed

1 (0,0,1) ,(0,1,0) 5/15
2 (0,1,1) 10/15

3 (0,1,2),(0,2,1),(3,0,0) 15/15
4 (4,0,0) 21/15 I
5 (5,0,0) 27/15

6 (5,0,1) 32/15

7 (5,1,1) 37/15
8 (5,1,2),(5,2,1) 42/15

9 (5,2,2) 47/15 1
10 (5,2,3),(5,3,2) 52/15
11 (5,3,3) 57/15
12 (6,3,3) 60/15

It is evident that the expected value destroyed is quite close to aA
linear function of attack size A.

If the value of one target exceeds half the number of defense
missiles available, the defensive strategy must be modified slightly.
This occurs, for exampll, when v1 = 3, v 2  3 = 1, and D = 5. In

this situation, the valuable target is defended with 2 vi - D9

2vi - D+1, . ..,D-1 or D missiles, each with probability 1,/( 2 D-2vi+l).

The pi can be found by Gaussian elimination as before.
The reader should remember that no optimum defense strate-

gies have been derived in this section; instead, a plausible defense
strategy has been proposed. It is entirely possible that an optimum
strategy would yield a curve of expected value of targets destroyed
versus offensive stockpile size that is below the curve for the

rN
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plausible strategy. However, it is conjectured that the plausible
defense strategy performs nearly as well as the optimum one. It
is clearly superior to a defense strategy which allocates defensive
missiles proportional to target value (a simple defense strategy,
useful when the offense has the last move, as discussed in the last
paragraph of Section 5.5.2). In fact, one can derive the following
result. Let G denote the ratio of the number of offensive weapons
required to obtain a given expected destruction when the defense
uses the randomized allocation, to the number of offensive weapons
required to obtain the same expected destruction when the defense
uses a fixed allocation p)roportional to target value. Then, if
D = Žvi,

TTA
G=~ mini ( D,2vi) V~ '

i:11

The quantity G is bounded by 1 and 1.5. In the example given earlier
in this section (v1 = 2, v2 = v3 = 1), G = 1.5; in general, G = 1.5 if

1 1

5.8 ATTACKER-ORIENTED DEFENSE STRATEGIES

So far, this chapter has been entirely concerned with preal-
location defense strategies - those in which the defense assigns
missiles to the defense of specific targets. In Chapter 4 it was
pointed out that it sometimes may be impossible for the defense to
know which targets weapons are directed at; in such a situation,
the defense must use an attacker-oriented defense instead. It was
shown there that under certain circumstances an attacker-oriented
defense may actually lead to a larger expected fraction of targets
saved than a preallocation defense, and therefore would be pre-
ferred even if the defense knows the targets weapons are directed
at.

If one is restricted to offense-last-move, the uniform
attacker-oriented defense strategy described in Section 4.6.2 is
optimum when the targets have different values and the objective
is to maximize the expected value of targets saved. The proof is
identical to the one given in that section. Furthermore, the algor-
ithm presented there for the determination of the optimum offens-
ive strategy against the uniform defense strategy can also be car-
ried through, but it is not known whether the algorithm is reliable
in this case. Burr and Graham (1970) conjecture that the algorithm
will find the optimum, providing that no degeneracies occur. For
details of the algorithm, the reader is referred to Section 4.6.2.

What if neither side knows the strategy employed by the other?
Assume that one is defending T point targets having values
v1 v2 ...' vT with a stockpile of D missiles, each of which

1 .
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has a reliability of p. Assume that the offense has a stockpile of =

A weapons: if a weapon is not destroyed by a missile, it will de-
stroy the target it is directed against with probability p. The quan-
tities A, D, T, p, p and the vi are known to both the offense and the

defense. The defense is unable to determine which target a weapon
is directed against.

As in Section 4.6.1, the optimum defense in this case is a
uniform random attacker-oriented strategy: the proof is the same
as that of Section 4.6.1. That is, he allocates [D/A1 missiles
randomly to A - D + ArD/Al incoming weapons, and [D.,A1 + 1 mis-
siles to the remaining D - A[D/Aj incoming weapons. The offense
has no way of knowing which number of missiles have actually been
allocated to a given weapon, unless D/'A is an integer. When it is
an integer, the problem becomes essentially that of Section 3.2.4,
and can be solved exactly by the methods there. Moreover, the
approximate solution given belcw becomes exact.

If D/A is not an integer, determining the optimum offense
strategy is considerably more complicated. The strategy can be
approximated very closely as follows. First, decide which targets
are worth attacking. The offense allocates weapons to the T0 tar-

gets of greatest value, where TO is the maximum value of i satisfy-
ing the inequality

i 1/(i-1)

I N( -1_) 1 i •T

and Q is the probability that a weapon will not destroy the target it

is directed against:

Q p p(I - o

where

po = (I - D/,'A + rD/A) (I - (•_p)[D:Ai)

+ (D'A - [DI•Al) (I _ (,_P,[D/Al+)

The reason that the strategy given here is only an approximation is
the fact that the probability that a target will survive an attack of k

weapons is not Qk, since the events are not independent. However,
if A is reasonably large, this discrepancy should be negligible.

Granting this approximation, the problem becomes essentially
identical to that of Section 3.2.4, and which was also mentioned in
Section 5.1.0. The number of weapons assigned to target v.,
1• j •- To, is given by
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a = (log C vj)!log Q

where

1/T 0
0 = v QA/T 0

f" Q

This leads to nonintegral a,; however, they can be rounded

off to yield an exact solution to the problem (except for the above-

r.-'ntioned approximation concerning Qk). The fact that such round-
1 1.s possible can be deduced from results of Section 3.2.4, and
aLso follow-, directly from the result of Dyrn and Schwartz (1969)
mentioned in Section 5.1.

If both sides use these (unrounded) strategies, the expected
value of targets destroyed is closely approximated by

To To /T A .'/T

E(V) vj - v r 0 ' Q
"j=l j=l

If the defense is able to determine which target each weapon
is directed against, he has the option of using a preallocation strate-
gy instead. It is important to compare the above E(V) with the cor-
responding preallocation E(V) to see which strategy is preferable
for the defense.

5.9 SUMMARY

This chapter extends many of the conceots introduced in the
previous chapter to the situation in which tar[,.ets have unequal
values; the criterion then generalizes to expected value saved, Not

[- surprisingly, general strategies are much more difficult to obtain;
even the problem of allocating weapons to targets in the no-drfense
case in order to minimize the expected value saved is not trivial.

Either dynamic programming or Lagrange mufltipliers cansolve the one-sided problem of allocating weapons against a known

defense (or missiles against a known offense); however, the two-
sided problem of the optimum defense allocation of missiles1 given
that t, offense can observe this and then allocate weapons, is quite
dif '),i ,) , -ilve. Several models are presented, differing princi-
* Ual1 - i'L tr-c degree of generality of the payoff function (the expected
v[_ -., d wheo,- i missiles intercept j weapons at a single target).
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When nei'Ie" side knows the other's preallocation before
making his o.:n, limited results are known. An exact allocation for
two targets of different values (or for a single weapon against a
single missile) can be given. One can also give an approximate al-
location (not stockpile-constrained) for more realistic numbers of
targets, weapons and missiles if missiles and weapons are buth
perfectly reliable.

The chapter concludes with a brief analysis of defense strate-
gies required when the defense cannot determine which target a
weapon is directed against when an intercept must be decided upon.
It is suggested that a defense allocation that makes expected damage
proportional to attack size is prudent if (contrary to the assumption
throughout the rest of this chapter) the attack size is unknown.

I4
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CHAPTER SIX

APPLICATIONS OF OFFENSE AND DEFENSE

STRATEGIES TO SPECIAL PROBLEMS

This final chapter examines some p)roblems which arise whon
the idealized offense and defense strategies of the preceding chap-
ters are applied to various special situations. Unfortunately, there
is very little material in the mathematical literature dealing with'
these applications. The mathematical models are in general quite
complicated; it is difficult to obtain analytic results except in very
special circumstances. In many cases, it is necessary to resort to
a high-speed digital computer either to search through many alterna-
tive strategies, or to simulate the offense-defense problem using
Monte Carlo techniques. Indeed, it happens all too frequently that
none of the above approaches gives very satisfactory answers to
the mathematical problem.

This chapter presents a more or less systematic classifica-
tion of each problem according to its input assumptions. It is hoped
that the framework is sufficiently broad so that a reader with a
specific problem can identify its mathematical model and contrast
it with related models. In particular, he can decide whether or not
it is appropriate to approximate his model by a mathematically more
tractable one.

6.1 ATTACKS ON THE DEFENSE SYSTEM

The primary objective of the offense is to minimize the num-
ber of targets surviving. When the targets are defended, he has two
ways of accomplishing this: (1) attack the targets directly; (2) at-
tack the defense system first and then the targets. Because unde-
fended targets are ordinarily much more vulnerable to destruction
than defended ones, the offense may find the second option attract-
ive even though a part of his stockpile must first be allocated to the
defense system attack.

Usually, there is one component of the defense system which
is the most profitable to attack, either because of its inhler-ent vul-
nerability to damage, or because of the relatively small numbers of
this component deployed. Radars, for example, tend to be difficult
to protect against blast damage because of their large size, and be-
cause under some circumstances they can be rendered temporarily
useless by atmospheric blackout from an 'therwise harmless burst
of a weapon. Furthermore, rauars are ordinarily quite expensive
and therefore few are used in a defense system. In this section,
attacks against the defense system are described in terms of attacks
against its radars; however, the reader should understand that in
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some applications it may be more profitable to attack the control
centers, the communications or the tactical computer instead.

In general, the mathematical model of Chapter 4 is assumed
to hold. Specifically, one has a set of T identical point targets to
be defended, and a set of R identical radars to carry out this task.
It is assumed that any one of the radars can successfully defend the
targets; the offense must destroy all R radars before he can attack
an undefended set of targets. The targets and the radars are lo-
cated sufficiently far apart so that an offensive weapon which de-
stroys one target or radar does not affect any other target or radar.
The defense can carry out attack evaluation (that is, he knows which
target or radar is being attacked in time to make an intercept if
desired), but he cannot do damage assessment (change his strategy
in the course of the engagement depending upon which targets or
radars have been destroyed). The latter assumption is rather un-
realistic, as the defense should know immediately if one of his
radars is destroyed: however, the defense in many cases will be
defending only one radar anyway so no reallocation is possible.
In any case, the assumption provides a bound on the outcome.

The defense has a stockpile of D missiles, and the offense a
stockpile of A weapons: each side knows the value of both D and A.
The probability that an unintercepted (or intercepted) weapon does
not destroy the target at which it is aimed is q0 (or ql); the analo-
gous probability of radar survival is qOr (or q 1r). These quantities

are known by both the defense and the offense. Although it is ap-
propriate to restrict the defense to one-on-one missile engagements
when defending targets, it is not necessarily reasonable to restrict
the defense to one-on-one missile engagements when defending
radars. In particular, one can assume three different defensive
strategies:

1. ql-q~ r + p(1-q 0 r) (one-on-one)

2. qlr q0 r + (I - (1-p)2) (1-q 0r) (two-on-one)

3- qlIr qr (I - (1-p)2 ) (1-q 0 r) (shoot-look-shoot)

where p is the defensive missile kill probability. The second and
third itrategies give identical qlr' but the second strategy uses

two defensive missiles whereas the third strategy uses one missile
with probability p and two with probability (l-p). When p is equal
to anity, onily the first defensive strategy need be used.

The criterion of effectiveness is E(f), the expected fraction
of targets saved in the set. It has the generic form

E(f) = PE11(f) + (1-P) Ed(f)
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where P is the probability that all radars are destroyed, E u(f) isthe expected fraction of targets saved if undefended, and Ed(f is-
the expected fraction of targets saved if defended. Note that EdP)

can be a function of P. The object of the offense is to minimize
this quantity (subject to his stockpile limitation), and the corres-
ponding goal of the defense is to maximize this quantity. It should
be recognized that the expected fraction of targets saved may be a
misleading criterion. In the target attacks discussed in Chapter 4,
the fraction of targets saved was a random variable having a proba-
bility density iunction with a single mode centered on E(f). How-
ever, the fraction of targets saved in a radar attack has a bimodal
probability density function; most of the probability content in this
density is located in the vicinity of Eu(f) and Ed(f), not at E(f). On

the other hand if the offense independently attacks many sets or
modules of raidar-defended targets, the bimodal character tends to
vanish -- one is simply summing a number of binomial variables,
which leads to a Gaussian distribution of expected fraction saved.
Nevertheless, after carrying out an optimization based in E(f), it is
l)rudent to record the probability that all radars are destroyed as
well as the two dependent expectations E u(f and Ed(f).

If a. reprsents the number of attackers and di the number of
defenders'for the ith target,

1T min(ai,di) max (0,ai-di)

i=1

Ta
1 E aqEu(f) 1• qo~

u T 0

The probability of radar destruction, P, takes on a variety of func-
tional forms depending on the defense strategies used. For example,
if the ith radar is attacked by air weapons and defended by dir mis-

siles, and engagements are one.-on-one, then

R - q7 n(a ir~d ir) qnjax (0, air- d ii))P. (I 1- ql,1. qor

6.1.1 Some Simple Models Involving Reliable Missiles and Soft

Radars

The best way to illustrate the complexities of radar attack of-
fense and defense strategies is to start with a very simple problem,
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and add on complicating factors one at a time. Assume that the of-
fense has the last move; that is, it can make its allocation after ob-
serving how the defense has allocated missiles to the defense of
radars and targets. This situation will occur, for example, if the
defensive missiles hame a limited range and the targets and radars
are far apart; each defended point has its own stockpile. Assume
that defensive missiles are reliable (that is, ql = q1 r = 1); assume

also that radars are completely vulnerable to attack (that is,
q0 r = 0). Clearly, d 1 = . .. dT and d lr ..... dRr* However,
the balance between 2dir and .di depends upon the strength of the

offense. If the offense is so strong thaL he can afford to allocate
his weapons evenly among the defended targets (instead of attacking
a subset of them), then Ydir should be set equal to sdi. However,

not all offenses are this strong; for example, let D = 48 A =36,
T = 12 and q0 = 2/3, and suppose that the defense allocates 24

missiles to radar defense and two missiles apiece to each target.
If Lhe offense first neutralizes the radar, he has one weapon left
per undefended target, and E(f), the expected fraction saved, is 2/3.
However, if he ignores the radars and attacks four target.s with four
weapons apiece and four targets with five weapons api.e, 'hen E(f)

is only (1/3) A (1/3)(2/3)3 (1/3)(2/3)2 = 47/81, and 'Ah' )ffei.•Pe will
prefer this attack. In other words, it may be wortY. .:,l for the de-
fense to shift some missiles from radars to target- iii order to make
E(f) equal for the two attacks. Note that the defense n. Ads ouly one
radar: additional radars contribute nothing to the defense in this
simple model. This model is discussed by Shapiro, Abramson and
Coburn (1966).

Suppose now that the defense can place his missiles in a
central stockpile and use any missile to defend any radar or tar-
get in the set. Thie offense no longer has the last move; for sim-
plicity assume instead that the defense has the last move. As usual,
the offense has two options - attack the targets ignoring the radars,
or attack the radars first and the targets subsequently.

How does the defense respond to an attack? The defense must
defend one radar against attack (selected at random so the offensedoes not know which) as long as defensive missiles remain in the

stockpile; if he allows a single weapon to penetrate the radar is
destroyed and the remaining stockpile is wasted. If the defense
still has missiles available when the attack against targets begins,
he matches missiles to weapons starting with the most lightly-
attacked targets; therefore the attacker will attack targets as
evenly as possible.

If the offense elects to attack radars first, he will attack all
radars with the same number of weapons; he knows that the defense
need only allocate missiles to the defense of the most lightly-
attacked radar. Note that he attacks the radars in order to reduce
or exhaust the defensive stockpile, not to destroy the radars
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themselves; it is impossible for him to destroy all radars until no
defensive missiles remain. However, it is instructive to examine
the form of the attack even in this drastically simplified and less-
than-realistic Fituation. This is perhaps the simplest model in
which the following question can be meaningfully asked: how many
radars does the defense require in order that the payoff (the ex-
pected number of targets saved) in a radar-first attack is less than
or equal to the payoff for a targets-only attack?

Rather than write down general formulas, it is useful to exhibit
the calculations carried out for a simple example. Let D = 12,
A = 36 and qo = 2/13; assume that there are T = 12 targets and R = 1

radar (with defense-last-move, all targets will be saved unless
A > D). Suppose that the offense attacks the radar with 6 weapons:
the defense responds with 6 missiles. Finally the offense attacks 6
targets with 2 weapons each and 6 targets with 3 weapons each,
and the defense responds by matching the offense at 3 of the 2-
weapon targets:

E(f) = (1/4) (1/4)(2 /3)2 (1/2)(2,/3)3 =0.509

Carrying out similar calculations for all possible radar attacks
from 0 to 12, are finds that the preferred attack is 12 weapons,

exhausting the defense and yielding an E(f) of only (2/3)2 = 0.444.
Clearly, one radar is insufficient; in fact this can be demonstrated
by the formula

D A/T (A- D)/T4+- (1 qO q .

A A!0

Suppose now that there are R = 2 radars. Now the defense has a
two-to-one advantage in trading missiles for weapons during the
radar attack. A sample of possible attacks is given in the table
below:

Size of Attack Weapons for Missiles for
on Each Radar Target Attack Target Defense E(f)

0 36 12 0.531
3 30 9 0.574
6 24 6 0.583
9 18 3 0.63' i

12 12 0 0.667

The radars are no longer the soft spot in the defense; the attacker
can achieve his best result by attacking targets directly.

The offense can decide upon his allocation before the attack
takes place. However, in the defense-last move model given above,
the defense must make decisions during the course of the attack.
In particular, the defense must decide whether a radar or target
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attack is taking place and instruct his missiles accordingly; fur-
thermore, when the radar attack is finished, the defense must im-
mediately work out the appropriate strategy corresponding to the
remaining offensive and defensive stockpiles. All this demands a
great deal of up-to-date information on the part of the defense, and
it may be prudent to construct a defense strategy which does not
depend upon this capability. Specifically, one can in principle de-
sign a defense strategy analogous to the Matheson strategy of
Section 4.3.1; that is, the defense decides before the attack to de-
fend a fraction R1 of the radars with one missile each, R2 of the

radars with two missiles each, and so on; the actual radars are
selected at random. The remaining defense missiles are analo-
gously allocated to the targets. Using this strategy, the defense
may end up with radar-allocated missiles which are never used to
defend targets. It is conjectured that this defense strategy is con-
siderably inferior to the defense-last-move strategy; undoubtedly
more radars would be required to reduce the payoff of a radar at-
tack below that for a target attack. Such a strategy appears to be
quite difficult to derive in general.

6.1.2 Radars are Resistant to Damage
Suppose now that the model is generalized to allow fcr radars

resistant to damage; that is, suppose that q0 >r 0. II the of-

fense has the last move, it is clear that the optimum defensive al-
location divides the missiles assigned to targets equally among the
targets. On the other hand, it does not matter how the missiles as-
signed to radar defense are allocated, because all the radars must
be destroyed to nullify the defense. In short, the defense strategy
can be characterized by a single quantity Dr,, the number of missiles
(out of a stockpile of size D) assigned to radar defense.

Unfortunately, the offense strategy cannot be specified so
simply. Not only must he determine A1. (the number of weapons as-

signed to the radars, out of a stockpile of size A), but also he must
decide upon the allocation to targets not knowing whether they can
be defended or not by their missile stockpile. All that the offense
can do is to control the probability that the targets will be unde-
fended (i.e., that the radars will be destroyed) by the number of ex-
cess Ar > Dr he assigns to the radars to exhaust the radar defense

and then destroy the radars themselves. Clearly, the offensive al-
locations against defended or undefended targets will be somewhat
different, and the best the offense can do is a compromise allocation
based on the probability of radar kill.

The form of the strategy is now clear. For any choice of D
by the defense, the offense will pick that Ar and target allocation
which minimizes E(f), the expected fraction of targets saved; on the
other hand, the defense will pick that Dr which maximizes this
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minimizing E(f). Unfortunately, it is very tedious to carry out these
calculations in practice, except for extremely small numbcis of
weapons, missiles and targets.

If the defense carn place his missiles in a central stockpile,
denying the offense the last move, the problem becomes significantly
more involved. As in the last section, it seems plausible to assume
that if the defense has the last move he will select one radar at
random to defend. However, the optimality of this strategy remains
to be demonstrated. More generally, it would be of interest to gen-
eralize the Matheson preallocation strategies to the case of radar
defense; however, this appears very difficult to carry out.

6.1.3 Unreliable Defensive Missiles

Finally, what is the form of the optimum defense strategy (and
offense strategy) when the defensive missile reliability p, is less
than unity? Unfortunately, few theoretical models for linding such
strategies have been proposed. Most studies assume a relatively
limited set of strategies and find the best one by examining all pos-
sibilities. The mathematical models of Chapter 4 do not seem
particularly useful for deriving optimum defense strategies for the
radars, because the objectives are different: target defense strate-
gies are designed to minimize the expected fraction of targets de-
stroyed, whereas radar defense strategies are designed to maxi-
mize the probability that at least one radar survives.

Any comprehensive radar defense strategy must take the fol-
lowing considerations into account:

1. How many radars should be defended? The advantage of
defending a subset of radars is that the offense is likely
to waste weapons overkilling undefended radars.

2. Should the defense use preallocation strategies (assign a
fixed number of missiles to each radar before the attack,
concealing this from the offense) or group preferential
strategies (defend a random subset of radars against any
attackers as long as any missiles remain in the stock-
pile) ? If an unintercepted offensive weapon has a high
probability of destroying the last surviving radar, it
seems unwise to hold back any missiles for target
defense.

3. Under what circumstances should the defense switch
from a one-on-one defense to a two-on-one defense?
For example, a two-on-one defense of a single radar
may be a much better strategy than a one-on-one defense
of two radars. Should two-on-one be used early in the
engagement, and one-on-one as the missile stockpile is
depleted? Of course, if shoot-look-shoot is available,
it should be used.

4. The defense should know when each radar is destroyed.
Can a damage assessment defense be designed to take
advantage of this ability?
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The target defense strategy is somewhat simpler to define; typi-
cally, one can use the Matheson strategy of Chapter 4, or a defense-
last-move strategy as an upper bound on the expected fraction of
targets saved. Note that the defense will not know the number of
offensive weapons allocated to targets until the target attack begins:

ote also that if a shoot-look-shoot radar defense or a group radar
defense is used, the defense will not even know the number of its
own missiles available for target defense until the radar attack is
done. Can one devise an overall defense strategy which does not
require decisions like these during the course of the engagement?
Is such a strategy significantly inferior in terms of the expected
fraction of surviving targets? Turning to the offense, can he observe
whether or not his radar attack has succeeded and then select his
target strategy, or must he decide on this prior to the attack?

Assume that the offense allocates Ar weapons to the radar

attack and A - Ar to the target attack. The defense can observe Ar

before deciding how many missiles to allocate to radar defense;
therefore, the offense selects Ar and the defense selects Dr to
satisfy

E(f) = max main (PEu(f) + (l-P) Ed(O)
Dr Ar

The offense allocates Ar weapons evenly to radars; the defense al-

locates missiles evenly to radars (either one-on-one or two-on-one)
until Dr is exhausted. Shoot-look-shoot is not allowed. The defense

then allocates the remaining D - Dr missiles to targets according to

a Matheson strategy; the offense allocates the remaining A - Ar

weapons to targets according to a Matheson strategy if he observes
that one or more radars survive, or uniformly if he observes that
all radars have been destroyed. (If the defense cannot determine
A - Ar, or the offense cannot ass.ess radar damage, one can derive

lower bounds for the expected fraction of surviving targets E(f).)
Finally, for the one-radar case, one can calculate E(f) using a shoot-
look-shoot strategy. Assuming D > Ar, each weapon attacking ther'
radar is allocated one missile, and a second missile if the first
one fails; any missiles left over from the radar defense are then
allocated to target defense using a Matheson strategy. Note that no
optimization of either Ar or Dr is attempted in this more complex
model.

It is possible that the offense will want to reduce the uncer-
tainty of the radar attack outcome by designing his attack so as to
have a high assurance that all radars will be destroyed: P --- P0 '

The outcome of the attack can then be characterized by two parame-
ters instead of three:
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E (f), the expected fraction saved if the targets are
undefended, and

Po' the probability that the attack fails to achieve
this goal.

Unfortunately, tbe defense is not likely to know the value of P0 se-
lected by the offense; the defense must therefore evaluate the sen-
sitivity of his strategy to a variety of different possible P0. This
of course, negates one of the most attractive characteristics of this
model: if PO is known, the number of alternative attacks to be eval-
uated is drastically reduced (either P = 0 or P = P0 ).

Suppose that the defense is restricted to a one-on-one defense
of both radars and targets. Assume that the defensive missile re-
liability is p, and that q% and %or are the survival probabilities of
targets and radars, respectively, against unintercepted weapons
directed at them. Assume that the offense has a stockpile A and
the defense a stockpile D. Assume that the defense intercepts each
attacker as long as his stockpile holds out. Assume that the offense
attacks the R radars with a weapons apiece and the T targets with
a weapons apiece: r

A = Rar + Tat

The quantity ar is chosen by the offense to minimize the expected
fraction of targets saved. How many radars must the defense supply
in order to make it more attractive for the offense to attack tar-
gets with his entire force? In other words, how many radars are
needed to keep them from being the soft spot in the defense?

A digital computer can be used to find the required number of
radars in case D - A; one can prove that in this case the number
is independent of D, so that one may assume D = A. As D drops be-
low A, so does the required number of radars: but this will not be
considered. The expected fraction of targets saved in a target-only
attack is approximated by

Et(f) = qO + p'q

The expected fraction of targets saved in a mixed target-radar
attack is approximated by

Em(f = Kq0 /T (l-K) (qo , p(l-q'))

where K, the probability that all R radars are destroyed, is given
by
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K I(qOr +p(I-q O) a

Note that these equations are strictly correct only when all expon-
ents are integers; more complicated formulae for non-integral ex-
ponents can be used instead if greater accuracy is desired.

How does one determine the minimum necessary R? In
principle, one selects a value of R and then computes Emr(f) as a

function of ar over the range 0 !_ ar r• A/R; the smallest integral

R for which Em(f) -> Et(f) for all ar in this range is the required
number of radars. Although this is verv difficult to obtain analyti-
cally, a digital computer can be easily programmed to start Nvith R
equal to one and increase it until E m(f) -> Et(f) always.

Consider an example in which T = 20, p = 0.8, q0 = 0.8,
q~r =0.6 and A = D = 300. It turns out that the offense should attack
six radars with 30 weapons each and the twenty targets with 6
weapons each. This attack destroys all six radars with probability
0.60, and leads to an E r(f) of 0.47, which is less than Et(f) = 0.54,
the target-only attack of 15 weapons on each target. However, if
the defense provides a seventh radar the offense will do better to
attack the targets.

This model can be readily modified to incorporate PC, the

minimum acceptable probability of radar destruction in a mixed
target-radar attack. However, it is worth remembering that this
model allows for a rather restrictive defense strategy - it is pos-
sible that the defense could get by with fewer radars if he were
allowed to defend targets and radars other than uniformly. How-
ever, it is difficult for the defense to specify preallocation models
unless he knows how many weapons the offense plans to allocate to
the radars.

6.1.4 A Model With Offensive Damage Assessment
Brodheim, Herzer and Russ (1967) discuss attacks on the de-

fense system under a somewhat different set of assumptions than
the ones so far considered in this section. As before, it is assumed
that one has a set of T identical point targets to be defended, and a
set of R identical radars to carry out this task. Any one of the
radars can successfully defend all of the targets; the attacker must
destroy all R radars before he can attack an undefended set of tar-
gets. The targets and the radars are located sufficiently far apart
so that an offensive weapon which destroys one target or radar does
not affect any other target or radar. The defense has a stockpile
of D missiles, and this quantity is known to the offense. The proba-
bility that an unintercepted weapon destroys the target it is aimed
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at is p, and the corresponding probability for the radar is p The
probability that a missile successfully intercepts a weapon is equal
to p. Both the offense and the defense know p, p and pr.

However, there are several important differences in the as-
sumptions. The defense no longer knows the size of the offensive
weapon stockpile, but he does know that the offense plans to continue
attacking until all T targets have been destroyed. The offense at-
tacks sequentially, one weapon at a time being assigned either to a
radar or to a target; the defense knows that the object of the offense
is to keep attacking until he has destroyed all T targets. Further-
more, the offense can carry out perfect damage assessment between 7-
firings; he knows exactly which targets and radars have been de-
stroyed. Of all these assumptions, the offensive knowledge of target
damage seems to be the most difficult to achieve in practice.

The criterion of effectiveness is the expected number of of-
fensive weapons required to destroy T targets; the defense seeks
to maximize this by assigning a suitable number of defensive mis-
siles to each offensive weapon (this number depends upon the re-
maining defensive stockpile size, as well as whether a target or
radar is being defended), and the offense seeks to minimize this by
deciding whether to attack a target or a radar with the next weapon
(this depends upon the number of surviving targets and radars, and
the remaining defensive missile stockpile).

It is impossible to write down in analytic form the offense and
defense strategies and the expected number of weapons needed to
destroy T targets. However, one can derive these quantities re-
cursively (by the method of dynamic programming) working back
from the end of the engagement. Let ft(i,j,k) be defined as the ex-
pected number of offensive weapons required to destroy i surviving
targets, given j surviving radars and k remaining defensive mis-
siles, and given that the offense next attacks a target. Let fr(i j,k)
be the analogous expected number of weapons, given that the offense
next attacks a radar. Let

f(i,j,k) = min ft(i~j,k), fr(i,j,k))

The initial conditions can be readily calculated:

f(O,j,k) = fr(0,jlk) = 0 for all j and k

t(i,j,0) = ft(i,k,O) = i/p for all i, j and k

fr(ij ,0) fr(i,0,k) =1I + i/p for all i, j and k
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The recursive equations are

ft(i,j,k) = max (-,f(i,j,k-m) (-P(1-P)m) f(i-1,j,k-m)p(1-p)nm)

fr~ij~l()= m k (1- -f( i,j,k-m) (I - pr(l1p)m) +f(i,j-l,k-m)pr(l-p)m)

f(i'j'k) m rin ,t(ibj,k), fr(i~J,k))

Using these, one can calculate the expected number of weapons re-
quired, as well as the associated ffense and defense strategies,
for the case i = T, j = R and k = D. For most cases of practical
interest a digital computer will be needed. Note that the above also
solves the problem if the attacker only wishes to destroy I < T tir-
gets; in fact this is the problem Brodheim, Herzer and Russ actually
considered. In fact, the target structure really plays no part in the
problem.

Brodheim, Herzer and Russ conjecture that the optimum of-
tense strategy always takes one of two forms - all weapons are as-
signed to targets, or else weapons are assigned to radars until all
radars are destroyed. It would be of interest to tabulate (as a func-
tion of q0 , q, qr2 qlr' D and T) the critical number of rad: t's

needed so that it is immaterial which is attacked first.

6.1.5 Attacks on Defensive Missile Silos

Weiner and McCraith (1970) assume (analogously to Brodheim,
Herzer and Russ) that the offense has a stockpile of indefinite size
and will continue to attack until I or fewer targets remain unde-
stroyed. However, they introduce an offense option not previously
considered - that of attacking the defensive missile silos them-
selves, as well as the radars and the targets. In order to evaluate
this somewhat more complex strategy, it is necessary for them to
assume that an undefended target, radar or defensive missile silo
is destroyed with probability one, and all defensive missiles fired
at offensive weapons intercept them with probability one. All en-
gagements are therefore one-on-one, and any defensive missile can
be used to intercept an offensive weapon aimed at any target, radar,
or defensive missile silo. All radars must be destroyed to nullify
the defense.

The offense attacks in waves. Each wave consists of one
weapon directed at each of the D defensive missile silos, or at each
of the R radars, or at each of the T targets. The offense cannot
assess damage between waves; that is, he does not know which of
his weapons were intercepted. How should successive waves be
assigned so as to minimize the offensive stockpile required to de-
stroy I or more targets?
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The defense strategy is relatively simple and is known to the
offense beforehand. If the offense attacks radars, the defense as-
signs one missile to the defense of a specific radar (unknown to
tho offense). If the offense attacks targets, the defense assigns I
missiles to the defense of I targets (again unknown to the offense).
If the offense attacks defensive missile silos, the defense uses half
of his unused and undamaged defensive missile stockpile to defend
the missile silos of the other half of the stockpile.

Although the restriction is not essential, it is easier to de-
scribe the offense strategy when the number of radars, R, and the
ratio of total targets to defended targets, T.I, are both integer powers
of two. The number of offensive weapons required to ensure that
I or fewer targets survive is

A =T - IR - D.(1 log2 R- for R - T 'I

= D i lo 2 (T /I)) for R -ý T!

What are the offense strategies? If R - T /I the offense attacks
defensive missile silos in log 2 R w-uves of D weapons each, reducing

the missile stockpile from D to D/R. Then the offense attacks radars
in (D./R - I) waves of R weapons each, reducing the missile stock-
pile to I. Finally, the offense attacks and destroys T - I targets in
a single wave of size T. If R m_ T/I, the offense attacks defensive
missile silos in log 2 (T'I) waves of D weapons each, reducing the

missile stockpile from D to D,'(T,/I). Then the offense attacks tar-
gets in D/I(T,I) = D/T waves of T weapons each, reducing the mis-
sile stockpile to zero. (Actually, the defense must defend 1I 1 tar-
gets on each wave, in order to deny the offense its desired destruc-
tion until the defensive missile stockpile is exhausted.)

The assumption that the offense can do damage assessment
between waves is not present in this model; however, the equ:,lly
unrealistic assumption that the defense knows the value of I is pres-
ent. More realistic defense strategies ought to eliminate the latter
assumption, perhaps by introducing a tapered defense in which fewer
and fewer targets are defended on successive waves. This would,
in fact, be a multiple target analogue to some of the defense strate-
gies discussed in Chapter 3.

6.1.6 Attacks on Command and Control Centers

In the preceding section it was shown what modifications of
the offense and defense allocation strategies must be made if the
defense system itself is vulnerable to attack. This section dis-
cusses a closely related problem - that of determining an offense I
strategy when the targets consist of not only a group of value points
but also one or more command and control centers guiding the
normal operation of the targets. The offense can either attack the
targets or the command and control centers in order to put the

I
I I I I I Ii p i
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targets out of operation. Of course, the two types of attack may not
always be equivalent; a destroyed target may be much more dif-
ficult to replace than a destroyed command and control center.

Relatively little work has been done on this problem; the fol-
lowing discussion is taken from Piccariello (1962). Assume that
one has a set of T undefended targets of identical value; each tar-
get has a provabilit, q0 of surviving a weapon aimed at it. These
targets are associated with a group of C command and control
centers; each control center has a probability q0c of surviving a

weapon aimed at it. If all command and control centers are de-
stroyed, the targets are considered to be completely destroyed.
Targets and centers are located sufficiently far apart so that a
weapon aimed at any one of them does not affect the others. As-
sume that the offense has a stockpile of A weapons. How should he
allocate weapons to targets and centers in order to minimize the
expected fraction of targets surviving? Note that the defense does
not enter explicitly here. One may assume either that there is no
defense or that the defense has an unlimited stockpile of unreliable
missiles and is constrained (say) to one-on-one engagements.

Let x., i = 1,2, ... ,T, be the number of offensive weapons al-

located to the ith target, and let y,, j = 1,2,... ,C, denote the number

of weapons allocated to the jth center. The problem, then, is to
minimize

E(f) =C (1qy

subject to the constraint

T C

A = xi ÷E j y AT +AC
i=1 j=1

If x. and y, are not restricted to integral values, Piccariello

shows that the minimum strategy is always one in which either
AT -- 0 or AC 0 0. It then to2lows that the optimum strategies are

either xi = A/T or yiz A/C.

However, this is not necessarily true for strategies restricted
to integers; the following simple example demonstrates that the
minimum strategy cani have AC > 0 and AT > 0. Let T = 5, A = 7,

C = 2, q0c = 1/4 and q0 be arbitrary. If all weapons are allocated

as evenly as possible to the targets, the expected fract in of targets
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surviving is (2/5)q, + (3 /5)q 0 . If all weapons are allocated to the
centers, the expected fraction of targets surviving is

1 - (I - (1/4)') (1 - (11/4)4) 319/.,16384. Finally, consider the

allocation which places one weapon on each target and center. The
expected fraction of targets surviving is then

- q0(1 - (1 -(1 ,'/4)2) 7q0/16. However, for all q0 it is true that =

"iq0 ..16 - (2./5)q 2 + (3 5)q0, and for q 0 .' 319 "7168 it is true that I
7q0 ,16 < 319/'16384. One can show, in fact, that the minimum strate-
gy is the one for which AC = 2, AT = S.

6.2 MIXTURES OF LOCAL AND AREA DEFENSE MISSILES
The preceding chapters of this monograph have been con-

cerned with a single type of defensive missile. Many realistic de-
fense models postulate the availability of two types of defense mis-
siles of substantially different coverage: a local missile which can
defend against weapons directed at a single target, and an area
missile which can defend against weapons directed against one of a
group of targets in an extended region. This section examines the
somewhat complex models of expected target damage and offensive
and defensive missile allocation which r'esult from such defense
systems.

6.2.1 Defense-Last-Move Models for Area Missiles
One model of the defense of a set of targets of different values

using both area and local mlissiles is presented by Galiano (1967a).
Specifically, assume that one has a set of T targets of values .
VlV 2 , ... ,vT. These targets are dcfended by a stockpile of DA area

missiles which can cover any target in the set, and a stockpile of
DL local missiles which can defend only single targets and must be
deployed prior to the attack. The offense has a stockpile of A AA
weapons. The defense knows the value of A, and the offense knows
the value of DA and the allocation of DL among the targets. The
complete allocation of offensive weapons to targets can be seen be-
fore the area defensive missiles are allocated (defense-last-move
strategy for area missiles). A target is destroyed by an uninter-
cepted weapon aimed at it with probability one, and defensive mis-
siles have perfect reliability.

What are the offense and defense strategies? Galiano assumes
that the offense attacks a subset of the targets, each one with a num-
ber of weapons proportional to its value. The defense, in turn, is
assumed to allocate local missiles in numbers proportional to tar-
get value. This local defense is optimum if the object of the offense
is to maximize the target damage per weapon expended, and no area
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missiles are present. It was also suggested as a v'easonable one to
use (in Section 5.5.2) if the defense does not know the offensive
stockpile, although of course he does here. The area missiles de-
fend as much total target value as possible; at each target they de-
fend, the area missiles destroy just enough of the weapons directed
at that target so that the local missiles can destroy the remainder
of the offense weapons directed at that target.

It is evident that if the parameters are allowed to vary con-
tinuously, the only parameter in the offense and defense strategies N
that must be optimized is the fraction of the total target value which
the offense elects to attack. Let A denote that part of the offensive
stockpile intercepted by local missiles, and A-AL that part inter-

cepted by area missiles. Then the fraction of value under attack is
A /D ,'and the fraction of target value destroyed is given by

L L-

The optimum value of AL is

AL -A-(DAA)1/
2

provided this expression is __DL; otherwise AL = DL. In other words,

the offense attacks any subset of targets v,v 2,. . ,v. such that

(v1 +v 2 + ... +vi)/(v1 +v2 + ... +VT) is equal to AL/DL. The ex-

pected fraction of targets destroyed is

1 * -E(f) (A - (DA)1/-)2 ADL

unless AL DL, in which case E*(f) = DA!(A-DL).

Galiano extends this model somewhat by allowing the defense
to locally defend only a fraction, h, of target value. This might
occur for example, if there are large installations of radars asso-
ciated with local defense which makes it unprofitable locally to de-
fend targets of small value. Assuming that the offense still finds
these targets worthwhile to attack, the area defense must be diluted
to protect them. The expected fraction of target value destroyed is

I E (f) -h + h LA -A L

D/\ A -AL

LI
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the optimum value of AL is

AA - (DA(A D L h -1

and the expected fraction of targets destroyed is

(A + DLh'l)1 - (DA(AA DI (hl -1 /))

1 - E* (f) L

(A + DL(h-11)) DL(h)

The optimum value of h can, in principle, be calculated from a
knowledge of the relative costs of defense missiles and radar
installations.

Galiano's model is slightly generalized by Kooharian, Saber,
and Young (1969). Specifically, they assume that it requires either
t local missiles or s area missiles to destroy a single incoming
weapon. It is apparent that if the parameters are allowed to vary
continuously, this is equivalent to the above with DA :eplaced by
DA/s and DL replaced by DL/t. Thus A

1 - E(f) = - s

and the optimum value of AL is

A-A - DAA/s) 1/2

The offense attacks a subset of the targets v 1,V2 , .... ,vi such that

(V +... +vv)/(Vl+V 2 +. .. +v,,T) is equal to tAL/DL. If only a frac-

tion h of the targets are defended by local missiles,
(I tAL• (I

The authors reparameterize the problem using the variables
r DL/V (number of local missiles defending a target of unit value)

and p = (tAL/DL)V/s(A-AL) (target value saved per area missile

employed); the offense optimization is then carried out on p instead
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of AL. The authors consider mixtures of weapons indexed bý the

ratio s/t, assumrrg that the defense can discriminate between weapon
types prior to commitment of missiles. They show that the offense
will use weapons with high s/t ratios against locally undefended tar-
gets, and weapons with low s/t ratios against locally defended tar-
gets (with at most one weapon type used against both target types).

8.2.2 Preallocation Models for Area Missiles
Apparently, no one has determined the optimum defense of a

set of targets of different values using both local and area missiles
when the defense does not know the offense allocation to targets but
can identify which target is being attacked in time to intercept it
with an area defense missile, and the defense uses a preallocation
strategy for area missiles. However, Galiano (1968) analyzes this
problem for targets of equal value, assuming the defense has a
stockpile of d area missiles per target and d, local missiles per
target, and the offense has a stockpile of a weapons per target. Each
side knows the stockpile size of the other side; furthermore, a tar-
get is destroyed by an unintercepted weapon aimed at it with proba-
bility one, and defensive missiles have perfect reliability.

The most important differences between Galiano's model and
the earlier ones discussed in this section is that offense and defense
allocations are allowed to vary continuously, and that a target is de-
stroyed if and only if the weapon allocation'exceeds the missile al-
location at that target (even by an infinitesimal amount). In short,
Galiano introduces a continuous Blotto game as described in Section
4.3.6. Because of the bias in favor of the offense, this continuous
Blotto game cannot be readily compared with the allocations else-where in this section.

It is evident that the local missiles should be distributed evenly
among the targets. Therefore, in order to destroy a target, the
weapon allocation must exceed the area missile allocation by more
than d . Two cases must be distinguished - offense dominance
(when da(a - (dI,/2) •(-dY)) and defense dominance

(~~henda(a -~d./2) kad~)'). If the offense is dominant, then
he attacks a typical target with ai weapons, where ai is a real num-

ber selected from the uniform probability density function between
d. and 2a - d;. The defense defends a typical target with area mis-
siles with probability da/(a-d ); if defended, a target is allocated
d area missiles, where d is a real number selected from the uni-
form probability density function between 0 and 2a - 2dM. The ex-
pected fraction of targets saved is E(f) ý d /2(a-d ). If the defensea
is dominant, then he defends a typical target with area missiles with

)A
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probability (1/d.) (d2 + 2dad) 1/2 (da/d;); if defended, a target

is allocated d area missiles, where d1 is a real number selected
from the uniform probability density function between 0 and

1/2
da + (da + dad;)d d The offense attacks a typical target with

probability 2a/(da 2di + (d 4- 2dad)1); if attacked, a target

is allocated ai weapons, where a. is a real number selected fromi
the uniform probability density function between d' and

2 1 •1/2
d. + da + (da + dad) . The expected fraction of targets saved is

E(f) = 1 - (a/dý) (da + dý - (d 2 +2dadc;) ). When d, is set equal

to zero, these results reduce to the continuous Blotto game discussed
in Section 4.3.6.

It should also be pointed out that the equal-value case can be
regarded as another generalization of the Matheson game of Chap-
ter 4 and can be solved by linear programming (see Section 4.3.4).

6.2.3 Models Involving Area Missiles of Limited Range
In the preceding two sections, area defense missiles were

assumed to cover a single region encompassing all the targets.
This section generalizes this model to allow for two or more
different regions, either partially overlapping each other or com-
pletely independent (sometimes a reasonable approximation to
regions which overlap to a limited extent). As one might expect,
it is impossible to give either the expected value destroyed or the
allocation of area vs. local missiles in simple formulas; one must
resort to linear programming , gorithms or to simulation.

Consider a nested allocation problem involving both local and
area missiles. Instead of a set of targets in a single region covered
by area missiles, assume that there are several nonoverlapping
regions to be defended, each containing several point targets of dif-
ferent values. Local missiles can defend only a single target; area
missiles can defend any of the targets within a region. If the de-
fense has a stockpile of DA area missiles and D local missiles,
and the offense has a stockpile of A weapons how should area mis-
siles be allocated to regions and local missiles to targets to mini-
mize the expected value of targets lost, assuming the most damag-
ing offensive attack against that allocation?

As usual, one must make further assumptions about the c-pa-
bility of the area missiles. Consider two models: an area defense
strategy for area missiles (random arrival), which may be called a
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separable model, and a defense-last-move strategy for area mis-
siles, which may be called a nonseparable model. Unintercepted
weapons destroy targets at which they are aimed with probability
unity: the reliability of area and local missiles is given by PA and

PL" One-on-one missile engagements are assumed.

Unfortunately, there appears to be no known algorithm for
calculating the minimax strategies and expected value of targets
destroyed in this nested allocation model; one must enumerate all
cases and search for the minimax directly. One can show by a
numerical example that one cannot find the optimum allocation by
breaking the problem into two parts, within-sector and between-
sector, and optimizing local and area missile allocations separately.
As might be expected, the direct search for the minimax is even
more laborious in the nonseparable model than in the separable onc;
the defense allocation of area missiles to targets after observing
the offensive allocation must also be taken into account.

If one is willing to change the damage criterion, an approximate
solution to the nested allocation problem can be found. Suppose that
the offense has a stockpile of indefinite size, and wishes to allocate
weapons to targets so as to minimize his cost in terms of weapons
expended per unit of value destroyed. Given a reasonably balanced
local missile allocation to targets, it is a relatively straightforward
task for the defense to allocate area missiles among sectors so that
the offense minimum cost pCat unit value destroyed is the same for
every sector. The local missiles, moreover, can be allocated to
targets within a sector so that the offensive minimum cost per unit
value destroyed is the same for every target within a sector, ignor-
ing the contribution of the area missiles to the defense. A few
numerical examples have been worked out showing that the alloca-
tions using this criterion are similar to the minimax allocations.
It would be of great value to the missile defense designer to know
the mathematical conditions under which this substitute criterion
generates allocations which are good approximations to the mini-
max allocations.

Miercort and Soland (1971) consider an even more general
pattern of area missile coverage - several partially-overlapping
regions superimposed upon a set of point targets of different values.
The r most valuable targets are assigned local missiles for point
defense. Both the area and local missile allocations and coverages
are known to the offense prior to the attack. Miercort and Soland
assume reliable defensive missiles (PL = PA = 1)': on the other

hand, they allow a general function of target damage by uninter-
cepted weapons. If xj unintercepted weapons attack target j, then

the expected value destroyed is given by v.f(x ), where f(x.) is aJ II I
concave and nondecreasing function with f(0) 1 0. An area defense
strategy for area missiles (controlled arrivals) is assumed: that
is, the defense uses his area missiles to counter any incoming
weapons, and then uses his local missiles after the area missile
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stockpile for that region has been exhausted. All missile engage-
ments are one-on-one.

No attempt is made to optimize the defensive allocation be-
tween local and area missiles; Miercort and Soland restrict them-
selves to finding that allocation of an offensive weapon stockpile of
size A to point targets which will maximize the expected value de-
stroyed. Their optimization is presented as a branch-and-bound
algorithm; the reader is referred to Miercort and Soland for
details.

6.3 MODELS FOR LOCAL AND AREA MISSILES INMOLVING COSTS

The models in this section differ from those in the previous
section in that the defense is given a fixed budget to divide as he
pleases among local and area missiles. Thus, the optimization in-
volves this division, as well as the conduct of the defense if attacked.
Sections 6.3.1 - 6.3.5 are the only ones in this monograph in which
cost is considered; it is appropriate to consider cost in this case,
since the defense potentially has resources of two types. In each
case in this section, cost is held constant, while the defense tries
to minimize the value destroyed.

Let a denote the number of offensive weapons allocated to each
target in the set, and let d be the number o1 area missiles per tar-
get which the defense can purchase if he selects a pure area-missile
defense. It is convenient (although not essential) to restrict a and
d to integral values. Let K > 1 be the ratio of the cost of an area
missile to that of a local missile. The defense has the option of
providing d-j area missiles per target and jK local missiles per
target, for j = 0,1, .. .,d. The defense is assumed to know the
value of a, and the offense is assumed to know the values of d and
j selected by the defense, as well as K. The offense has the option
of attacking all targets with a weapons apiece or a fraction f of the
targets with a/f weapons apiece, 0 <' f 6- 1. These offensive strate-
gies can be indexed using the letter i in various ways; for example,
f = i/jK for 0 • i _<- jK, or f = a/(a+i), for i = 0,1,2, ..... By attacK-
ing a subset of the targets, the offense avoids some of the local de-
fense weapons.

It appears quite difficult to carry out an analysis of this mis-
sile allocation problem except in the simplest situations. Specifi-
cally, assume that a one-on-one defense is used, and that the targets
are sufficiently far apart so that a weapon aimed at one target af-
fects no other targets. Assume that q0, the probability that a tar-

get survives an unintercepted weapon directed at it, is zero, and
that ql, the probability that a target survives an intercepted weapon

directed at it, is unity.
It should be noted at the outset that the defense can save all

the targets if d - a by using all area missiles and intercepting each
attacker as it arrives. (This can be called an attacker-oriented
defense.) Therefore the analyses below will assume d < a.
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The allocation between local and area missiles depends
strongly upon the assumptions made about the effectiveness of the
area missiles. Three different models are considered:

1. The complete allocation of offensive weapons to targets
can be seen before area missiles are allocated to them
(defense-last-move strategy for area missiles).

2. As each weapon arrives, the defense assigns an area
missile to it, not knowing which target is being attacked,
until the stockpile of area missiles is exhausted. The
offense cannot control the arrival-order of his weapons
(area defense strategy for area missiles, random
arrivals).

3. As each weapon arrives, the defense assigns an area
missile to it, not knowing which target is being attacked,
until the stockpile of area missiles is exhausted. The
offense is able to control the arrival-order of his weapons
(area defense strategy for area missiles, controlled
arrivals).

6.3.1 A Defense- Last-Move Model
The defense-last-move strategy pertaining to case 1 for area

missiles is considered first. It is unlikely that this situation will
often arise in practice; nevertheless, it furnishes an upper bound
for defense capability. Moreover, should area defense missiles
not be useful in this model, it seems unlikely that they can be
profitably employed when less is known about the attack.

The defense has available d-j area missiles per target (aver-
aged over the original set of targets) and jK local missiles per tar-
get. Note that these area missiles are not assigned to the defense
of any particular target; however, it is convenient to keep track of
offensive weapons an,! defensive missiles on a per-target basis. If
the offense attacks a fraction i/jK of the targets with ajK/i weapons
apiece, then jK of these weapons will be destroyed by local defense
missiles at each target attacked, leaving (a-i)jK,/i weapons at each
target attacked to be assigned to area defense missiles. In other
words, there are a-i weapons per target (averaged over the original
set of targets, not just the attacked targets) to be assigned to area
defense missiles. If the defense has the last move, it can save a
fraction (d-j)/(a-i) of the targets being attacked using its area mis-
siles. The expected fraction of targets destroyed if the defense
mixes area and local missiles using strategy j and the offense at-
tacks a fraction i!jK of the targets is then given by

1 - E(f) = (i/jK) (I - (d-j)!/(a-i))

This equation is equivalent to the one developed by Galiano (1967a,
in Section 6.2.1, if one notes that DA = T(d-j), DL = TKj, A = Ta
and AL = (i/jK)dL - iT.
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The offense can choose i after observing the defensive choice
of j; therefore, the goal of the defense is to choose j so that the
maximum damage the offense can do is minimized. In other words,
one must find those strategies i and j yielding

j (1-E f

Permitting fractional allocations, the optimum strategies and the
corresponding E*(fl can be easily found by straightforward tech-
niques of differential calculus. if 1 < (a/d) < K, the optimum de-
fense strategy is given by j = d(l - (d/a)); in other words, one al-
locates d2 /a area missiles per target. The offense attacks a
fraction OijK = a/dK of targets, and the expected fraction of targets
destroyed is

S- E*(f) = (a/dK) (1 - (d/a)) =-(a-d) /dK

Note that this is the same as the corresponding formula by Galiano
(1967a) in Section 6.2.1, if the above substitutions are made. How-
ever, this formula is substantially simpler because j = d(1 - (d/a)).

As has been mentioned above, if a/d <_ 1, one can deploy only
area defense missiles and the entire set of targets can be saved.
Furthermore, if a/d K, all area defense missiles should be used;
the expected fraction of targets destroyed is then 1 - (d/a). It is
interesting that it is necessary to mix area and local missiles only
in some middle range for a/d. The reason for this fact is that when
a is large the defense cannot afford to give up the greater efficiency
of area missiles, and if a is small the defense doesn't need local
missiles anyway. Note, however, that in the latter case, one could
also use a mixture of area and local missiles and still save all the
targets defended.

6.3.2 A Model in Which the Offense Arrival Order is Random

The area defense strategy for area missiles (random arrivals),
pertaining to case 2, is considered next. The defense has d-j area
missiles per target (averaged over the original set of targets) and
jK local missiles. The defense attacks offensive weapons in the
order of their arrival, first using area missiles; when this part of
his stockpile is exhausted, he uses local missiles. The area mis-
siles are assigned in ignorance of the targets the weapons are aimed
at; each local missile defends its assigned target against an offens-
ive weapon directed against it. The offense attacks a fraction
a/(aA) of the targets in the set with (a4i) weapons apiece, i =0,1,2.
Weapon arrivals are random with respect to the targets the weapons
are directed against.

If the defense mixes area and local missiles according to
strategy j and the offense attacks a fraction a/(a+i) of the targets,
the expected fraction of targets destroyed can be derived with the
aid of the hypergeometric probability density function:
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C

1-Ef a S(a+i' faT -(a-'i) /~aT
Ea,-- m kT(d-j) - mj kT(d-j))m=O

where T is the number of targets and C is the minimum of T(d-j)
and (a+i) - (jK+I). Besides being tedious to compute, this expres-
sion contains the additional variable T. If one is willing to assume
that the number of offensive weapons to be engaged by local missiles
at the ith target is independent of the number of offensive weapons
to be engaged by local missiles at the jth target, then a binomial
argument can be used to derive E(f).

The probability that an offensive weapon is intercepted by an
area missile is (d-j)/a; if there are (a +i) weapons aimed at an at-
tacked target, the probability that exactly m are intercepted by area
missiles is approximated by

P = (a4i),d-.)m (1 d-.)a+i- m

(Recall that d < a has been assumed, so that the above is meaning-
ful for any 0 -_ j _• d.) In order for the target to be saved, there
must be jK or fewer of the (a+i) weapons that were not intercepted;
that is, a+i- m < jK, or m ! a+i- jK. Thus, the probability
that a random target is destroyed is equal to the summation of
binomial terms:

a+i-jK- 1
p a p

a-Li m
m--0

Again using the independence argument above, P is equated to
1 - E(f). This approximation is likely to be a very good one as long
as T is large.

The offense can choose i after observing the defensive choice
of j; therefore, the goal of the defense is to choose j so that the
maximum damage the offense can do is minimized. In other words,
one must find those strategies i and j yielding

I - E*(f) = min min(I - E(f))1 j i

Unfortunately, there is no simple analytic solution to this problem;
one must directly search the matrix of E(f), viewed as a function of
i and j.

Table 1, on the next page, may give the reader some insight
into the behavior of the optimum i and i and the corresponding
E*(f) for moderate values of a, d and K.
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TABLE 1

OPTIMUM STRATEGIES AND THE EXPECTED

FRACTION OF TARGETS DESTROYED

d =2 d 2 d= 2
a =3 a= 4 a= 5

K E-(f) i j K E*(f) i j K E*(f) i

1 .704 0 0 1 .937 0 0 1 .990 0 0
2 .474 2 1 2 .738 0 1 2 .942 0 1
3 .354 4 1 3 .554 2 1 3 .714 2 2
5 .272 8 2 5 .364 7 2 5 .455 6 2

d-4 d =4 d =4 d =4
a =5 a =6 a =8 a =12

K E*(f) i j K E*(f) i j K E*(f) i j K E*(f, j

1 .663 0 1 1 .891 0 1 1 - - - 1 - - -

2 .417 5 2 2 .558 4 3 2 .807 1 3 2 - - -

3 .304 9 2 3 .399 8 3 3 .57353 3 .923 1 4
5 .200 18 2 5 .256 16 3 5 .366 13 3 5 .571 9 4

d=8 d 8 d 8 d =8

a=9 a =10 a =12 a 16

K E*(f) i K EA(f) i K E*(f) i 3 K E*(f) j

1 .628 0 3 1 .828 0 3 1 - - - 1 - - -
1- .475 5 2 1 .607 4 4 1 - - - 1" . . . .
2 .385 10 2 2 .481 8 4 2 .623 6 6 2 .868 2 7
3 .279 19 3 3 .341 17 5 3 .435 157• 3 .603 !0 7
5 .183 36 5 5 .217 34 6 5 .272 31 7 5 .375 26 7

d = 16 d = 16 d = 16 d = 16

a = 17 a =18 a =20 a-=24

K E*(f) i j K E*(fl i j K E*(f) i j_ K E-(f) i

1 .605 1 1 1 .769 0 4 1 - - - 1 - - -

1 .540 5 2 1 .650 4 4 1 .799 2 8 1,1, - - -

0 .458102 11.564 9 4 1 .682 7 10 1 .870 3 14
2 .371 20 3 2 .440 18 6 2 .530 15 11 2 .670 11 14
3 .268 38 4 3 .312 35 7 3 .368 32 12 3 .459 27 14
5 .173 73 5 5 .197 68 8 5 .229 64 14 5 .283 59 14
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From this table, one can conclude that the offense strategy i
Ls approximated by dK - a + 1; however, as d - -, K - and a - d,
the errors in this formula become substantial (for example, when
d = 16, a = 17 and K = 5, i is predicted to be 64 but is actually 73).
If a '> 3d,/2, the defense strategy j is approximated by d- 1, regard-
less of the value of K. These rules of thumb are helpful in narrow-
ing the area of search in the E(f) matrix.

6.3.3 A Model in Which the Offense Can Control His Arrival Order
The area defense strategy for area missiles (controlled ar-

rivals), pertaining to case 3, is the final model to be discussed in
this section. The defense has d-j area missiles per target (aver-
aged over the original set of targets) and jK local missiles. The
defense attacks offensive weapons in the order of their arrival,
first using area missiles; when this part of his stockpile is ex-
hausted, he uses local missiles. The area missiles are assigned in
ignorance of the targets the weapons are aimed at; each local mis-
sile defends its assigned target against an offensive weapon directed
against it. The offense attacks a fraction a,/(a+i) of the target,
i = 0,1,2, ..... The key difference between this model and the one
analyzed previously is that the offense can control the order of ar-
rival of his weapons on targets.

The offense exhausts the area missile stockpile with the first
(d-j)T weapon arrivals, and then attacks as many targets as possible
with (jK+l) weapons apiece. If a is sufficiently large the offense can
choose i = 0 and destroy aUl the targets. If not, he selects i to satisfy
the following equation:

d -j -L-(jK+l) =aa d+-i

From these two cases one has

i = max(o a, a)a-d+j

The expected fraction of targets destroyed by the optimal at-
tack is

E(f) =a/(a+i) min 1 a- djk'jK4 1

It is easily seen that (a-d+j)/(jK+l) is a monotone function of j for
j >_ 0, so that the minimum of the function is assumed at either j = 0
or j d. Thus,

mm max E(f) = min(1, a-d, a/(dK+l)): ii

L
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(Recall that a • d.) It is interesting that if a - d = a/(IK-1), so that
a - d = l/K, then any choice of j is optimal. Otherwise (unless tile -
above minlimax is 1 and no defense is possible) the optimal defense
is one of the two extremes: all local or all area missiles, accord-
ing to the inequalities (1/K) "- (a-d) and (1,,K) < (a-d).

6.3.4 A Comparison of Models

It is interesting to calculate the expected fraction of targets
destroyed as a function of the effectiveness of the area missiles,
under the assumption that the optimum mix of local and area mis-
siles is used. Let a =4, d =3 andK =2.

1. Defense-last-move strategy for area missiles: the do-

fense allocates d 2 ia = 9,/4 area missiles and 6,4 local
missiles per target, the offense attacks a fraction 4
a,/dK = 2./3 of the targets, and the expected fraction of
targets lost is 1/6. The nearest integer solution is to
allocate two area and two local missiles per target: the
offense attacks a fraction 0.586 of the targets and the ex-
pected fraction lost is 0.171.

2. Area defense strategy for area missiles (random arrivals):
the defense allocates two area and two local missiles per
target, the offense attacks 4/7 of the targets with 7 weapons
apiece, and the expected fraction of targets lost is 0.442.

3. Area defense strategy for area missiles (controlled ar-
rivals): the defense allocates no area and six local mis-
siles per target, the offense attacks 4/7 of the targets
with 7 weapons apiece, and the expected fraction of tar-
gets lost is 4/7 = 0.572.

Note that under typical conditions, the defense can achieve
the same results as those of case 2, even if the offense can control
the order of his arrivals, by allocating his d-j area missiles at
random among the a arriving weapons. This is an attacker-oriented
defense such as discussed in Section 4.6.2, and of course can be
applied only if no physical limitation precludes it.

6.3.5 An Allocation Model for Targets of Unequal Value

This subsection generalizes two of the models discussed
earlier to targets of different values. Assume that one has a set of
T point targets with values v1  V2 _ ... • VT, where "v= V.

These targets can be defended by area missiles with a kill-probability
of PA' or local missiles with a kill-probability of PL The defense

uses a shoot-look-shoot strategy; it a missile fails, it is replaced
by another one. Each area missile is the economic equivalent of K
local missiles. Area missiles can defend any target but cannot
distinguish which targets the offensive weapons are aimed at. As
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each offensive weapon arrives, area missiles are launched at it un-
til it is destroyed or the stockpile of area missiles is exhausted.
Only when no area missiles remain are local missiles employed.
If a weapon is not intercepted, it destroys the target at which it has
been aimed.

The defense has a budget which allows him to purchase Td
area missiles, T(d-1) area missiles and KT local missiles, .. ., or
KdT local missiles. The offense has a stockpile of unspecified size, I
and wishes to allocate weapons so as to minimize his cost in terms -
of weapons expended per unit of value destroyed. The offense is
assumned to have complete control over the arrival sequence of the -
attack.

It is not difficult to show that all targets above a certain mini-
mum value should be defended. If the defense elects to place local
missiles at a target, he should place a number of missiles propor-
tional to the value of the target: dm IV I m= 1,2. . .,i. (This

gives iractional allocations in general; however, one can also give
a search technique leading to integral allocations.) The defense
strategy then consists of two decisions only: the value of f, and the
choice of i. The sum of dm over the defended targets determines
the number of local missiles used; the remainder of the defense
sLtuckpile is then invcstcd in area missiles.

The offense employs a strategy based upon defensive stockpile
exhaustion. Assume that the defense has allocated T(d-j) missiles
to area defense, and is defending targets vlV2'...,vi with %_

dl,d 2 , ... ,'d local missiles, where d 1 4 d2 .. di = jKT. The
offense first allocates pAT(d-j) weapons (on the average) to exhaust I
thc area defense missiles using a shoot-look-shoot doctrine; then I
he allocates pLd. weapons to the target of value vm (if he has de-
cided to attack this target at all) in order to exhaust the local de-
fense missiles: finally he allocates one weapon apiece to each tar-
get with no local defense and each target with an exhausted local
defense.

What are the optimum defense and offense strategies? It is
possible to prove that the optimum defense strategy takes one of
two forms:

1. If KpL, use area missiles exclusively.

2. If use a mixture of area and local missiles.

The number Td of targets to be defended by local missil,,
is that value of i which maximizes the following
expression:

'r(pAd+l) -(ic(i)
V- 1-(PA/KPL)) (Vl +2 " vi)
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Let Vd denote the total value of the Td locally defended

targets. The value of f is found from the equation

f =C(Td/L

Once f is determined, the total number of local missiles
is given by fd and the number of area missiles is given

by 'rd - f v KK.(1,
The offense strategies are simple. If (A KPL, attack, all targets
in the set. If pA KpL' either attack all targets in the set, or at-

tack all targets not defended by local missiles; the payoff is the
same in either case. The number of weapons cxpended p0r unit of
value destroyed is given by C(T.

6.4 OFFENSE AND DEFENSE STRATEGIES FOR A GROUP OF

AREA TARGETS

The mathematical models introduced in this chapter and the
two preceding ones have been designed specifically for point tar-
gets, that is, for targets of small size relative to the lethal radius
of an offensive weapon. It is easy to specify a damage model for
point targets: if a single weapon destroys the target with proba-
bility p, a group of n weapons independently directed at the target
destroys it with probability 1 - (1-p) n. Unfortunately, the corres-
ponding damage law for an area target is much more difficult to
specify in a simple form. In Chapter 2, the e,.p.eted damage to a
Gaussian target (or to a uniform-valued circular target) by n
weapons having a cookie-cutter damage function is presented in the
form of an integral which cannot be analytically evaluated. Conse-
quently, it appears quite difficult to derive offensive and defensive
allocation models for multiple area targets analogous to the models
for multiple point targets given in Chapters 4 and 5. Very little!
research has been carried out on this problem.

Can a simple analytic approximate damage law be postulated
for area targets? In Chapter 2, the square root damage law for un-
defended Gaussian tar-ats can be derived if one assumes that

1. the number of offensive weapons, n, approaches infinity
and the lethal radius, R, of each weapon approaches zero
in such a way that iiR2  c, and

2. the probability density function of weapon impact points
is not Gaussian but optimum.

Although the square root damage law becomes less plausible for
defended Gaussian targets, it may be a useful approximation. In
particular, it seems reasonab'e when the defense is unable to

a
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determine the aimpoints of individual weapons before committing
missiles to them. Assume that the ith target in a defended group has
value vi, distributed according to a circular Gaussian value density

function with variance crT. Using the square root damage law, it is
easy to construct a function specifying the expected value saved at
the ith target if it is attacked by ai offensive weapons and has d.i
missiles (each with perfect reliability) assigned to its defense. Ifai -> di,

E(i,ai,di) = vi(i + (ai-di) 1 /2 Ro'YT) exp(_-(ai-di)11 2 R/aT)

if ai :5 di,

E(i,ai,di) = vi

Assuming that the offense has the last move, the optimum offense
and defense strategies for a group of targets of different values can
be derived by the heuristic methods of Pugh (1964) discussed in
Chapter 5. The details of this procedure can be found in Goodrich
(1968). It would be of interest to generalize Goodrich's allocation
model to defensive missiles with reliability less than unity.

Note that this model assumes that, when ai > di, weapons are
intercepted at random in the original attack of size ai. If the de-
fense can determine where each weapon will impact on the target
before committing a defensive missile to it, it should be possible
to design an improved defense (perhaps one that defends a sub-
region of the target and abandons the rest). Defense models of area
targets taking advantage of impact point information remain to be
investigated.

Under certain circumstances, generalized area target models
can be handled approximately by the methods of Chapters 4 and 5.

6.5 SUMMARY

This chapter attempts to model the offense-defense problem
in more realistic detail than was considered in the previous two
chapters. Specifically, two important defense problems are modeled:
the vulnerability of the defense system itself to attack, and the al- A
location of high-cost area missiles and low-cost local missiles to
the defense of a group of identical targets. Models of both types
are widely scattered through both the unclassified and classified
literature, principally in government and defense contractor reports,
and the object of this chapter is more to call the readers' attention
to the range of problems involved than to survey systematically the
state of the art.
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in general, analytic solutions appear impossible to obtain ex-
cept in situations so simplified that nearly all realism is gone;
simulation is usually required. However, simulation is also unsatis-
factory because the extremely large number of variables needed to
characterize the model makes sensitivity analyses and exploration
of alternatives tedious. At the end of the chapter, the question of
finding offense and defense strategies for area targets (not specifi-
cally considered since Chapter 2) is raised. A

A

I

-I
-I
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